CHAPTER 2.6

Process Control and
Operational Intelligence

Osvaldo Bascur

This chapter presents a summary of the state of the art for
mineral-metallurgical process control and “plant operational
intelligence.” Operational intelligence is a way of providing
an augmented view of real-time data rather than using tradi-
tional fixed plant information management reports. The data
are transformed into insights for further analysis using busi-
ness intelligence tools.

Basic process control is an integral part of most mineral
and metal processing plants. It has helped many operations
reduce costs and increase productivity and performance.
Developments in process control in the mineral-metallurgical
processing industry over the past decade have been greatly
influenced by new measurements, advances in computer soft-
ware and communications, and internet/cloud technologies.
Another extremely important factor has been the selection of
strategies to link control actions to process measurement to
form an overall control and plant management system. These
three components—measurements, process control strategies,
and computer hardware—form a triangle of integrating ele-
ments, as shown in Figure 1. The knowledge workers who are
the operators and process engineers are at the center of these
elements. These individuals operate the process units. They
are learning about the process and designing and maintain-
ing the process control strategies. These control strategies are
integrated with an operational management support system,
combining all forms of information m a mineral processing
plant. A continuous improvement and innovation culture is
required for enabling operational excellence. In the following
paragraphs, a control triangle is used to describe the process
control and operational management technologies in the digi-
tal age. This is called “Industries 4.0” and refers to the digital
revolution that is currently taking place.

The decades between 1990 and 2010 saw the paral-
lel development of three important aspects of modern min-
eral processing control: (1) measurement devices designed
especially for the particulate systems encountered in these
industrial plants, (2) mathematical models constructed for the
analysis of these systems, and (3) control strategies developed
using the capabilities of digital computers. In recent years, the
development of intelligent sensors (advanced control systems

based on object technologies and communications networks)
have transformed the way plants are managed.

Plants require many sensors to measure the process and
equipment variables to monitor conditions and to process
sensor data using a variety of algorithms to assist in the sta-
bilization of operations and the optimization of resources to
minimize operating costs for an environmentally safe, profit-
able operation. The “Process Measurements™ section provides
an overview of this topic. The lower right side of the triangle
in Figure 1 shows the control hardware and computer systems
that provide the environment for delegating the transtorma-
tion of the measurements into real-time controls for manipu-
lating the final control elements for all process units. Shown
at the top of the triangle are the control and performance man-
agement strategies that process the sensor data to manipulate
the final control elements in a process plant. The “Process
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Figure 2 Integrated mineral processing block process diagram

Control Strategies” section provides an overview of com-
monly used process control techniques. At the center of the
triangle are the people who design, operate, and maintain the
systems necessary to keep the overall process of the triangle
in working order.

Operators are usually part of the control loop because they
must oversee the plant to achieve the desired target set daily
by management. Process engineers are the support personnel
who use the process data to develop strategies to manage con-
straints; process advisors also support plant operations. Real-
time data are used to assist with condition-based maintenance
to prevent costly equipment downtime or to prevent process
excursions due to failure to detect these abnormal situations
inreal time. Condition-based equipment maintenance, process
excursions, and fault detection support functions belong to the
plant data infrastructure, which provides data for performance
monitoring, statistical process control, overall performance
management, predictive analytics, evolutionary optimization,
metallurgical mass balances, and energy management. These
systems include ore blasting to the final tailings ponds and
route deliveries to the filter plants and port.

Figure 2 shows a typical mineral processing plant. It starts
with the mine trucks feeding the ore to a primary crusher, fol-
lowed by comminution circuits to liberate the metal-bearing
mineral in the ore for further separation in a flotation circuit to
capture the metal-bearing species and discard the waste in to a
tailings dump prior to the thickening of the waste to reprocess
as much water as possible. The flotation circuit uses the min-
eral characteristics to float the desired species and to hinder
the waste material that needs to be separated from the rock.
The major process variables are recovery and the grade of the

metals, depending on the type of ore being processed that is
sent from a mine area or several mines.

These plants have traditionally used automation in the
form of regulatory controls to stabilize process operation by
rejecting the main disturbances.

Table 1 shows the variables that are used as controlled
variables and those that are used as manipulated variables
to achieve the desired business objectives in the regulation
and stabilization of crushing, grinding, flotation, leaching,
thickening, filtering, slurry transport, drying, smelting, and
converting and refining the minerals and final metal products.
The process control and operational management technologies
are very unique. However, the basic principles are applicable
to all industrial process systems. First, the control objective
needs to be defined and then the behavior of the process units
needs to be observed (and modeled). The best pair of manipu-
lated variables needs to be coupled to the desired control vari-
ables while avoiding process and equipment constraints for an
environmentally safe, profitable operation.

Today’s technologies are enabling mineral and metallur-
gical processors to develop competency centers where they
can manage their mine and mineral processing plants remotely
to coordinate mining operations with downstream operations.
The objective is to find the optimal cut of grade at the mine
and the optimal cut size at comminution to achieve the best
recovery grade combination to maximize profits. The typi-
cal process control objective is to maximize the metal yield
while lowering operating production and mine costs. Because
grades at mines have been lowered, large volumes of ore are
processed to achieve economical production targets. As such,
it has become more expensive to transport the ore and dispose
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Table 1 Controlled and manipulated variables for crushing,
grinding, flotation, thickening, slurry transport, and filiration

Process Units

Controlled Variables

Manipulated Variables

Crushing Product fineness Feed rate
Circulating load Closed-side setting
Power draw Screen area
Bin level Screen speed
Crusher level
Grinding Product size distribution Feed rate
Feed size Sump level
Sump level Pumping rate
Circulating load Solids in feed
Holdup of solids Mill speed
Flotation Recovery Aeration
Grade Agitator speed of rotation
Circulating loads Pulp levels
Froth levels Reagents
Froth speed Frother
Percent solids Collector
Meodifiers
Depressants
Water spray
Thickening Slime level Flocculant addition

Rake torque
Underflow % solids
Underflow viscosity
Bed level

Pumping rate
Rake position
Water dilution

Viscosity modifier

Slurry transport

Slurry flow
Slurry density
Slurry viscosity

Suction and discharge
pressure

Slurry pH, oxygen

Slurry-water interface

Water dilution
Pump speed
Upstream pressure
Tank level

Slurry inhibitor

Viscosity modifier

Filtration

Cake humidity
Cake thickness

Feed rate
Pressure
Water removal

Time

Adapted from Herbst and Bascur 1984
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Figure 3 Plant data and control hierarchies for process
control and operational intelligence

of the waste. At mills, energy costs have increased to liber-
ate the metal-bearing particles. Large volumes of water are
also required by the wet grinding circuits. Final water recov-
ery is achieved at tailing impoundment facilities at large min-
eral processing complexes. The center of excellence can be
located nearby to integrate the mine and the mill, or it can be
based remotely to enable a virtual, cloud-based environment.
Integration of the operational data and events transforms the
organization into a continuous improvement and innovation
culture. An operational excellence program is an ongoing pro-
cess of improvement to achieve environmentally safe, profit-
able operations.

The overall objective of process control and management
systems is to stabilize operations to be able to maximize the
economic profit of the operations while adhering to equipment,
production, quality, environmental, and safety constraints.

The “Plant Operational Intelligence Management™ section
briefly describes the disruptive technology in process indus-
tries. In the past, process controls have lacked maintenance
and training. Distributed control system (DCS) hardware is
expensive, so this hardware is not updated very often. As such,
many vendors provide alternative cost-effective solutions on
other, more modern platforms. However, the software on
which all these tools are built requires constant upgrades to
perform well and deliver value. The rapid rate of change in
computer systems and software applications requires modern
maintenance practices. DCSs and programmable logic con-
trollers (PLCs) can provide robust data to external systems
that have professional data and analytical capabilities. Being
able to access or share data with external services allows plant
employees to augment their acquisition of knowledge and
allows extended support of remote plant operations.

The next section, “Industrial Internet of Things:
Disruption in Automation,” presents new ways of using real-
time data and remote connectivity for collaboration using
the cloud.

The “Conclusions and Future Implications” section sum-
marizes process control and data infrastructure in the mining,
mineral processing, and extractive metallurgy industries. It
provides an overview of the benefits and methodology for the
assessment of advanced process controls and newer predictive
analytics.

PLANT DATA AND CONTROL HIERARCHY
Figure 3 shows a data and control hierarchy diagram with
two sides. The right side of the pyramid shows the traditional
real-time control levels fed by the sensors and data collected
from the field. At the lowest level is the instrumentation level,
which consists of devices for acquiring data from sensors,
field displays, and hardware safety interlocks for ensuring
emergency shutdowns. The “Process Measurements™ section
of this chapter lists the basic concepts to explain the many fac-
tors involved in implementing the right measurements in this
very harsh environment for the mineral and metals industry.
The instrumentation level reports the data to the regula-
tory control level, which is implemented using control hard-
ware such as DCSs and PLCs. This level provides integration
of the real-time data for the regulatory control level. It is one
of the most important levels because it has to be extremely
robust for industrial process continuity and operational safety.
(This is equivalent to the brain stem and cerebellum in the
brain.)

Copyright © 2019 Society for Mining, Metallurgy, and Exploration. All rights reserved.



280 SME Mineral Processing and Extractive Metallurgy Handbook

Regulatory Controls

Regulatory controls maintain the process variables at their
prescribed set point, stabilizing the variations due to local
disturbances occurring at a time scale of seconds to minutes.
The disturbances can be caused by many factors, including
weather conditions, changes in the raw material characteris-
tics, ore hardness changes, particle size distributions, or min-
eralogical compositions” start-up and shutdown at the other
sections of the chain supply of the plant. In addition, this level
allows the operator to take control of the plant in an emer-
gency, and it can be controlled manually. The DCS and PLCs
require software tools to configure the control strategies and
require a human operator interface to monitor the behavior
of the plant under control. The level sends the streaming data
collected from the plant to a dedicated industrial historian
(like the black box of an airplane). The stream data are used
for enhanced equipment condition-based maintenance and for
control tuning and improvements.

The “Process Control Strategies™ section provides addi-
tional details about ways to capture the process dynamics
and the configuration of the possible control strategies. The
proportional-integral-derivative (PID) controller is perhaps
the most commonly used process control algorithm to imple-
ment local single-input, single-output (SISO) control loops.
The DCS is used to implement multiloop control strategies
such as feedforward, cascade, ratio, and constraint controls.
DCSs have augmented their capabilities so that the next level
is also part of a modern DCS.

Multivariate Controls

The next level is called multivariable process control or
model-based process control. This level has evolved in recent
years due to advances in hardware and computing capabilities.
In a processing plant, the problems are typically multivariable
with many control interactions due to the nonlinearities of the
process, process equipment constraints, and unknown process
disturbances. Because of the possible interaction among the
variables, all the control movements must be coordinated.
Control actions are taken to accommodate longer duration
disturbances at a time scale of approximately minutes. This
is also due to the slow processing time of the online process
sensors or the instream process analyzers. Mineral and metal
operation process dynamics are important, and a dynamic
process model is necessary. The output of this level is used by
the DCS as a set point to drive the final control actuators that
operate the plant. The final control elements are the valves,
variable-speed pumps, and weight feeders, among others. This
level is metaphorically equivalent to the hypothalamus, which
maintains brain chemistry and controls appetite, thirst, body
temperature, and libido. This last statement stresses the impor-
tance of having a hierarchy in process control design. It is
highly recommended that priorities are clarified when imple-
menting and maintaining overall control strategies.

Coordination Controls

The plant coordination controls are implemented to balance
the overall constraints to find the optimal steady-state operat-
ing conditions of the plant based on the current production
requirements and factors, such as raw materials, energy and
consumable costs, and production demand. These process
controls require the left-side level to analyze operations to
identify the current process and equipment constraints.

Chain Supply Optimization

The planning and scheduling activities are usually determined
by the integration of the plant’s industrial data infrastructure
with the enterprise business systems, which contain the pro-
duction plans and utility costs. For example, in mineral pro-
cessing plants, the mine production, mill, tailing, and port
production areas are integrated to optimize the overall energy
and water use based on the type of ore being mined (drilling,
explosives, and blasting strategies). The lowering of the ore
grades requires a much more detailed analysis for classifying
the operating strategies and lineups of the plant for the best
and most profitable alternative. Mill data are now being used
to optimize mine-blasting operations for minimum operating
costs while maximizing throughput.

Condition-Based Equipment/Production Monitoring
This section describes alternative ways of reusing data, gener-
ating events to create actionable insights based on operational
intelligence. It is critical to be vigilant about maintaining
equipment to achieve high productivity and availability lev-
els to remain competitive in the mining and mineral process-
ing industry. Maintenance activities were not carried out in
the past because the technology was not available. Reusing
data from the industrial data infrastructure is the most cost-
effective way ofachieving high productivity levels. Today, oper-
ations and maintenance teams have to work with the same data
to keep the instrumentation, process controls, and equipment
online 24/7 for optimal production levels. Using the process
sensors and capabilities of a modern industrial data infra-
structure, maintenance personnel can implement condition-
based maintenance strategies to monitor and predict the per-
formance of moving equipment in real time. Now there is
powerful data analytics to filter data to detect problems prior
to a failure.

Because the process and equipment data are always avail-
able, employees can use the data to generate notifications to
initiate a programmed shutdown as opposed to dealing with an
unscheduled shutdown.

When regulatory controls and multivariable control loops
underperform, this can cause process variability that adversely
affects profitability. Having the stream data available in an
easily accessible format for advanced analysis simplifies the
continuous improvement process required to support the con-
trols at all levels for all process units in the plant.

The increasing use of real-time data is elevating the role
of plant personnel to that of knowledge workers who are
expected to make real-time decisions to improve business per-
formance. The high variability of ore qualities, rapid changes
in energy costs, reduced availability of process water (or, in
some cases, too much water in equatorial regions) require
adaptive real-time performance strategies.

Event Management Data Aggregation

The left side second level supports the validation and clas-
sification of the data to develop actionable information. This
actionable information is the key ingredient for implementing
a continuous improvement and innovation program in pro-
cess industries. This is called an operation intelligence pro-
gram. It allows the sensor data and the operational events to
enable online analytics to evaluate the production and opera-
tional costs on a shift-by-shift basis. The transformation of
data and operational events into actionable information using
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these operational events to obtain production, energy, water,
reagents, and other consumption variables at a high level
of detail is the new currency in business. These operational
events are the new transactions to optimize production and
reduce operating costs. Transactional systems are now inte-
grated with this new data to proactively improve the over-
all production performance of mineral and metal processing
plants (Bascur et al. 2017).

Performance Monitoring

The left side of the pyramid represents the support center,
which provides actionable information to all functions of the
plant to improve productivity. The operational metrics can be
calculated by using proper data classification and aggregation
at a high level of detail. This new strategy enables faster com-
munication and collaboration within the functional teams at
the plant and within the global business via the cloud. At this
level, the business and time contexts are added to the process
measurement. This level is used to generate tangible benefits
for improvements. The data and events are analyzed to deter-
mine the best course of action for the plant.

Planning and Execution Management

The integration of operational analysis and business intelli-
gence is the next level. At this level, plans are constantly being
adapted by defining the best targets to optimize all process
areas, beginning with the mine, process plants, and tailings
management. Botin (2009) describes the latest strategies to
integrate sustainability into a mining organization. Data man-
agement and automation are what allow these strategies to be
successfully implemented.

PROCESS CONTROL FUNDAMENTALS

Many excellent books have been written about process con-
trol and there are many different approaches, but it is best to
follow the advice that best suits the needs and goals of one’s
specific company.

In his textbook, Stephanopoulos (1984) states: “All the
requirements (safety, environmental constraints, product
specifications, operational constraints and plant economics)
listed above dictate the need for continuous monitoring of the
operation of a chemical plant (process), and external interven-
tion (control) to guarantee the satisfaction of the operational
objectives.”

This is accomplished through a rational arrangement of
equipment (e.g., measurement devices, valves, controllers,
computers) and human intervention (e.g., plant designers,
plant operators), which together constitute the control system.
In fact, one’s working definition of process control is shaped
by one’s specific interests. The point is that to be successful
in the long term, one must recognize that a systems or holistic
approach will be essential (i.e., the broader definition of pro-
cess control).

Why Do We Need Controls?

A critical problem in the process of ore extraction is the vari-
ability of the different elements that constitute the ore; these
unmeasured variables are called disturbances in the process
control vocabulary. Each section of the mine has different
ore types, hardnesses, mineralogical compositions, and geo-
logical characteristics; in addition, there are disturbances due
to weather changes, people, equipment deterioration, power
oscillations, and water qualities. Marlin (2014) outlines seven

major categories of control objectives, which are discussed in
the following sections.

Safety and Health

The safety of the people in the plant and in the surrounding
community is of paramount importance. Plants are designed
to operate safely at expected temperatures and pressures; how-
ever, improper operation can lead to equipment failure and the
release of potentially hazardous materials.

Environmental Protection

Protection of the environment is critically important. This
objective is mostly a process design issue—that is, the process
must have the capacity to convert potentially toxic compo-
nents to benign material. For example, in smelters, the gases
are cleaned and processed in sulfuric acid plants, where the
sulfur dioxide (SO,) generated in the smelting of sulfides is
converted into sulfuric acid (H,SO,4). Many sensors are used
to monitor the gas cloud of smelters. Tailing ponds are always
very well designed to prevent issues with the re-treatment of
the water and effluents.

Equipment Profection

Much of the equipment in a plant is expensive and difficult to
replace without costly delays. Therefore, operating conditions
must be maintained within constraints to prevent damage. The
types of control strategies for equipment protection are similar
to those for personnel protection, that is, controls to maintain
conditions near desired values and emergency control to stop
operations safely when the process reaches boundary values.
Many sensors are used to robustly maintain the equipment to
prevent exceeding the mechanical strength or the chemical
limits of the material. This is very important for the steel used
in smelters or in hydrometallurgical plants. Pumps, compres-
sors, and blowers are typically subjected to high temperatures
and corrosive gases. Installing the proper sensors in addition
to process control sensors to protect the equipment will pre-
vent costly downtimes and loss of production. All these sup-
port strategies have become an important part of implementing
environmentally safe, sustainable process control strategies.

Smooth Operation

A mineral or metallurgical plant includes a complex net-
work of interacting processes; thus, the smooth operation of
a process is desirable because it results in few disturbances
to all integrated units. A typical example is the comminution
circuits. These are highly unstable due to the large variation
of the ore qualities (soft and hard ore); these variations are
directly sensed by the rougher flotation banks. Having a stable
grinding operation is necessary to have an optimum flotation
performance. Most of the disturbances in flotation circuits
come from the grinding circuits.

Product Quality

The final products and quality specification in a metallurgical
complex are determined by customer requirements. Having
the right humidity for the concentrate and the right mineral
composition for the downstream processes such as smelting
or pellets used in blast furnaces is extremely important. It is
extremely expensive to remove high silica content in a blast
furnace if the pellet quality has reached the target level. The
same 1s true for the quality of the concentrates—they must
have the right amount of sulfur and the right metal grade. The
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specifications may be expressed in terms of composition (e.g.,
percentage of each component, chalcopyrite, pyrite), physical
properties (e.g., density, humidity), or a combination of these
factors. Process control contributes to efficient plant opera-
tions by maintaining the operating conditions required for
excellent product quality. Improving product quality control
is a major economic factor in the application of digital com-
puters and advanced control algorithms. This is where process
models are used to estimate the quality variables in the pro-
cess due to the inadequacy of the quality sensors to measure
the particle size distributions, mineralogical compositions, or
chemistry of the process streams. Laboratory samples can be
correlated with process variables using machine learning to
accurately determine the quality conditions in a plant. The
augmentation of knowledge provided by the operational intel-
ligence data infrastructure is changing how mineral and metal-
lurgical plants are operated.

Economics

Naturally, the goal of the plant is to return a profit. There
are several strategies based on sustainable long-term prof-
its. Process control improves plant performance by reducing
the variation of key variables. When variations are reduced,
the desired value of the controlled variable can be adjusted
to move closer to constraints, enabling an increase in prof-
its. Furthermore, it should be as economical as possible in its
use of raw materials, energy, capital, and human labor. Thus,
operating conditions must be controlled at optimum levels of
minimum operating costs, maximum yields, and minimum
metal losses.

Monitoring, Fault Prevention, and Diagnosis

Complex mineral and metallurgical complexes require excel-
lent automation processes. Plant control and computing sys-
tems generally provide monitoring features for everyone in
the organization to properly manage the instrumentation
calibration, process control identification and tuning of the
control algorithms, stream samplers for metallurgical stream
laboratory data, equipment sensor maintenance, environmen-
tal remote monitoring, and so on. Because employees can-
not monitor all variables simultaneously, the control system
includes alarms that can draw attention to a problem. Now
there are new ways of alerting operations and maintenance
personnel to problems using plant computers and competency
centers. Operational intelligence and machine learning algo-
rithms are now used to predict faults or quality. Many oppor-
tunities exist to reduce minor losses that previously may not
have been prevented in remote plants. New ways of using data
and events are discussed later in the chapter.

All seven of the aforementioned requirements should
be addressed simultaneously; failure to do so could lead to
unprofitable or, worse, dangerous operations. Today, ever-
increasing environmental and safety regulations require per-
sonnel to be more knowledgeable to avoid penalties due to
process incidents in mineral and metallurgical plants.

Automatic controls are devices that assist operators with
performing routine tasks faster and better than they could do
manually without assistance. Mills run for 24 hours a day, and
it 1s impossible for a human worker to remain alert at all times.
Automation using the feedback principle is not new; there are
many examples throughout history of automatic control prin-
ciples being used for many applications. Process control is a

subdiscipline of automatic control that involves the selection
and tailoring of methods for the efficient operation of chemi-
cal and metallurgical processes.

Proper application of process control can improve the
safety and profitability of a process while maintaining con-
sistently high-quality products at a production target set by
the economics and planning department. The automation of
selected functions has relieved plant personnel of tedious
routine tasks, allowing them more free time to analyze data,
supervise, and learn from the process. The operational data
and metadata available in process information systems help to
improve processes. The data can be used to analyze the current
operating conditions for ore types and economic conditions.
As such, there are many different approaches to running a mill
these days, especially with the high volatility of metal prices
and energy and water costs.

The variability of ore qualities and lower grades requires
plants to process larger volumes of ore; at the same time, plants
must also implement environmentally safe process controls.

Process Control Loops

A typical control loop can be described in terms of input
and output process variables. These variables are measured
using online sensors, if available, or inferred from online
calculations.

The output variables are associated with the control
objective. The input refers to a variable that causes an output.
The input is the tonnage flow rate to the mill, and the output
is the % circulating load of the ball mill circuit, for example.
The input could also be the water addition to the sump, and the
output of the controlled variable could be the % solids of the
hydrocyclone overflow.

The input causes the output, and this relationship cannot
be inverted. The causal relationship inherent in the physical
process forces one to select the input as the manipulated vari-
able and the output as the measured variable. Selected exam-
ples in mineral and extractive metallurgical processing are
presented later to illustrate the process control pairing of con-
trolled variables and manipulated variables. The final pairing
is the responsibility of the mineral processing engineer who
understands the process units and has a clear objective for the
design strategy. A basic list of the possible available variables
for selected process units is also given later in this chapter.

For example, for a grinding circuit control, the objective
could be to maximize the product throughput while maintain-
ing the cut particle size on target for the best recovery and
grade possible. The engineer selects sensors that measure
important variables rapidly and with sufficient accuracy. The
engineer must provide the manipulated variables that can be
adjusted by the control calculation.

The engineer must decide which variable should be
manipulated for each controlled variable. He or she should
determine the most logical structure, or pairing, that requires
a causal relationship between the final control element of the
manipulated variable (usually a valve, pump, or belt con-
veyor) and the controlled variable. Many other issues must
be considered in a complex mineral processing plant, such as
favorable dynamic responses and reducing the interactions
among controllers.

The development of mathematical models for the analysis
of dynamics and the control of mineral processing systems is
extremely important. Digital process simulators for crushing,
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grinding, classification, flotation, dewatering, and agglom-
eration models assist with defining the control algorithms.
Dynamic process simulators can help with process control
system training and selection of alternative control strate-
gies. The design of the operator interface is also vital; this is
where workers can visualize and respond to problems within
the plant. Figure 4 shows a simple process control diagram
displaying the controller and the selected variables.

Based on the control algorithm, the manipulated vari-
ables change the output of the controlled variables to adjust
for process disturbances. Every process control strategy has a
clear objective and a profit objective function to evaluate the
performance of the setting and methods used to analyze the
manipulated variables.

The set point is the target that is determined for the con-
trolled variable. Figure 4 also shows a feedback control loop.
The process outputs are measured by sensors that have noise
and require good calibration. These controlled variables are
compared with the set point to come up with a way, using
the controller, to manipulate a variable that will maintain the
desired target. The manipulated variable connects to an actua-
tor that drives the pump or conveyor to the desired target—
say, for example, the correct flow of water into the sump pump
to achieve the right change in the hydrocyclone overflow par-
ticle size.

Contirol

The control maintains the desired condition in a physical sys-
tem by adjusting a selected variable in the process. A control
strategy can be defined in several ways. The most common
one is a feedback controller.

Feedback Control

The feedback controller uses an output of the process to cal-
culate the value of the manipulated variable to produce the
desired effect on the desired output by setting a set point.

Feedforward Control

A feedforward controller does not use an output of the
process—it uses the measurement of an input disturbance to
the plant. This measurement provides an early warning that the
controlled variable will be disturbed sometime in the future.
With this warning, the feedforward controller has the oppor-
tunity to adjust the manipulated variable before the controlled
variable deviates from its set point. A good process model is
required to produce this advanced calculation for assessing the
calculation. For example, knowing the hardness variation of
the ore can drive the feed to the mill. If it is difficult to mea-
sure the ore hardness, the controller can reduce the feed flow
rate to prevent overloading the mill, for example. This type of
controller provides the value for the set point of the controlled
variable.

The operating conditions of the process are measured—
that is, all control systems use sensors to measure the physical
variables that are to be manipulated near the desired values
(operating targets). Each process has a control calculation or
algorithm that uses the measured and desired values to deter-
mine a correction to the process operation. The control cal-
culation can be very simple or sophisticated, depending on
the stability of the given process circuit. The results of the
calculation are implemented by adjusting a valve or motor in
the process for the manipulated variable to compensate for the
disturbances in the process inputs (measured or unmeasured).

Process Control Documentation

Good control engineering always requires a thorough under-
standing of the process. A good process flow diagram show-
ing the major sensors provides a solid start when designing a
process control system (Bhattacharyya et al. 2012; Turton et
al. 2012). A process flow control diagram (PFCD) is different
from a traditional piping and instrumentation diagram (P&ID),
which is a great visual for detailed process documentation. A
P&ID is a detailed graphic used in the process industry that
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shows the piping and vessels in the process flows along with
the instrumentation and control devices. These drawings are
used for many purposes, including designing plants, purchas-
ing equipment, and reviewing operating and safety procedures.
Having a good PFCD of the plant is necessary to design the
process control strategy well. In addition, it serves as a good
way for the operator to understand the behavior of the process
and have a clear picture of the overall progression. Therefore,
many people use PFCDs, and to avoid misunderstandings,
standards have been developed by the International Society
of Automation (ISA) for all countries worldwide (ANSI/ISA-
S5.4-1991; ANSI/ISA-S5.5-1985).

It is important to use the best possible process control
diagrams to document the process and its controls not only
to document the strategies but also to teach users about the
cause and effect of the manipulated and controlled variables
in the overall circuit. This is also valid for performing a mass
balance of the process units or the combined process systems
in a plant. It 1s good practice to be able to close a mass balance
with the process control data available. These diagrams can be
used for process diagnostics and troubleshooting. They might
also be used for developing process control graphic diagrams
to build a human graphical interface for the operators.

Referring to Figure 4, all process equipment—piping,
vessels, valves, and so forth—is drawn in solid lines. Sensors
are designated by a circle connected to the point in the process
where they are located. The first letter in the PFCD indicates
the type of variable measured. Some of the most common des-
ignations are as follows: A = analyzer, F = flow rate, L = level,
P = pressure, W = mass flow rate, ] = power measurement,
T = temperature, C = control, and I = indicator.

If the signal is used in a real-time calculation, it is also
shown in a circle in the PFCD. The second letter in the symbol
indicates the type of calculation. Two possibilities can be con-
sidered: C for feedback control and Y for another calculation.
A noncontrol calculation might be used to measure the flow
and temperature around a furnace to calculate its work level,
thatis, Q =rCpF (T, — Ty

The first reason for control is to maintain the tempera-
ture at its desired value when disturbances occur. The second
reason is to be able to navigate to the desired variable (set
point) without overshooting. The desired values are based on
a thorough analysis of the plant operations and objectives. The
selection of sensors and the proper manipulated variables and
their physical control elements (valves, pumps, motors) with
the right controlled variables is very important for good pro-
cess control performance.

Today, virtually all large and medium-sized mineral pro-
cessing plants around the world practice some form of auto-
matic control. The interactions between the basic elements of
the control triangle can be summarized as follows: The state
of the art involves the use of several stabilizing control loops
involving a mixture of control strategies. These control strate-
gies include a variety of classical control strategies, advanced
control strategies using models, and expert controls based on
best practices. By capturing and analyzing the process vari-
ables, employees can maintain the instrumentation and process
control loop performance to achieve a high level of productiv-
ity and simplify the maintenance of the control loops.

The vast majority of control schemes can be classified
as classical control strategies. The feedback control law
involving proportional and integral actions is used to com-
pute changes in the controller output (manipulated variable) in

response to measured deviations from a set point for a specific
controlled variable. For such strategies, each manipulated
variable is linked to a controlled variable on a one-to-one
basis with the formation of a SISO control system. The com-
putation capabilities of the control systems allow several pro-
cess measurements to derive estimates as controlled variables.
These soft sensors are derived from early work on advanced
model-based control strategies. However, they require addi-
tional information for successful implementation. The opera-
tor requires training to understand this additional information
embedded in the control loops. These strategies are usually
called advanced controlled strategies. Many algorithms are
available in modern DCSs to account for many of the time
domain industrial aspects of a plant.

Control handling is delivered using a human-machine
interface. The engineers building, tuning, and maintaining the
control strategies design these tactics. These engineers need
to design the visualization of the process controls for operator
interaction. This is something that can be overlooked. Bascur
(1991a) presents some guidelines that were used to success-
fully implement process controls in several plants. Li et al.
(2011) also discusses the new role of the operator and his or
her training requirements. The design of the control room also
plays a very important role in the delivery of the controls and
the management of the operations (Lundmark 2008).

PROCESS MEASUREMENTS

Table 2 summarizes the mineral processing instrumenta-
tion available along with the principle of measurement and
the types of circuits in which it is most often used. Many of
the sensors used in the mineral industries take advantage of
microprocessors, digital imaging, and sophisticated signal
processing required for particulate system measurements.

Table 2 also lists the many types of measurement devices
used in mining and metal processing. Flow, pressure, tempera-
ture, load, vision, sound, particle size, and chemical online
analyzers of all types and shapes are available. The newest
measurement devices use optics in video cameras to transform
the images into process variables by measuring particle sizes
at the mine and the mill. Other novel vision measurement
devices have been used in semiautogenous grinding (SAG)
mills to analyze particle sizes, mill liner conditions, and flota-
tion circuits.

Recently, additional vision sensors have entered the mar-
ket (Coker 2015). By combining the application of standard
imaging technology with new liner wear monitoring hardware,
the Kaltech Sentinel reveals live information about a running
mill. The Kaltech Sentinel is a system that incorporates two
main components: the MillWatch camera unit and the elec-
tronic bolt (eBolt). By providing visualization along with the
process, the data can be analyzed to optimize the grind cut and
the overall grinding circuit availability.

Soft Sensors

Software sensors (or soft sensors) are another important
process monitoring tool. Soft sensors essentially use other
easy-to-measure process variables to estimate the value of an
important property of a piece of equipment or process unit that
is otherwise difficult, costly, or time-consuming to measure.
Predictive analytics capabilities to obtain empirical models
using a hierarchical data model are shown later in Figure 13
(Bascur 2016). After data classification and assessment of the
process unit operating conditions, the process variables can be
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Table 2 Mineral-metallurgical processing instrumentation

285

Measurement

Devices

Type of Circuit

Aeration, oxygen, gases

Magnetic rotameter
Crifice plate
Turbine

Delta pressure

F|0tuiion, hydmmeiu"urgy,
pyrometallurgy

Belt conveyor speed

Measurement of revolutions per minute

All operations

Bin level

Sonic sensor
Capacitance probe
Laser

Radar

All operations

Crusher power, mill power, flotation power,
process unit power

Watt meter
Torque meter
Motor current

All rotating process equipment

Feed rate dry solids

Weightometer
Two-dimensional profile

All operations

Flotation cell froth level

Digital vision
Capacitance probe
Conductivity probe

Flotation

Flotation cell level

Bubble tube

Float

Float and ultrasonic
Resistance tape
Conductivity probe

Flotation

Mill load, converter load, process unit load

Load cells

Watt meter

Torque meter

Sound meter
Vibration sensors
Bearing temperature
Qil pressure

Vision sensors

Grinding

Mineral species composition

X-ray fluorescence analyzer
Neutron activation analyzer

Flotation, hydrometallurgy

Particle size

Ultrasonic particle size analyzer
Light-scattering size analyzer

Digital vision (dry solids) (two-dimensional, three-dimensional)

All operations

pH

Electrode
Conductivity

All operations

Pressure

Load cells
Many technologies

All operations

Pulp density

Gamma nuclear gauge
U tube/load cell
Differential pressure cell

All operations

Pulp level

Capacitance probe
Sonic sensor
Conductivity probe
Delta pressure
Radar

Bubbling methods

Flotation

Sludge level

Float
Ultrasenic sensor
Light attenuation

All operations

Slurry flow rate

Magnetic flowmeters
Ultrasonic flowmeters
Sonar Howmeters

All operations

Torque Amperage All operations
Load cell
Torsion bar

Viscosity Shear stress Thickening

Flow

Water (liquid) flow rate

Crifice plate and other delta P devices
Turbine meter

Magnetic flowmeters

Sonar flowmeters

All operations

Adapted from Herbst and Bascur 1984
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used to predict other variables using a deterministic first prin-
ciple model or a semi-empirical model. The use of a first-order
filter is recommended to smooth the data to remove noise. It
is also possible to use a Kalman filter to determine the opti-
mal estimation if a dynamic process model is available. An
extended Kalman filter is capable of providing an estimate of
the process kinetics. As such, the flotation kinetics or com-
minution kinetics can be obtained (Bascur and Herbst 1985b,
1986; Herbst and Harris 2007).

The most common procedure is to run experiments in the
plant and measure the critical variable while recording all pro-
cess variables in the history log. Then, operators typically run
a procedure to obtain the process variables at the same time
as the sample measurement and run a multilinear regression
using Excel data analysis tools or other software tools such
as Python, R, or Microsoft Azure Machine Learning Studio.

The objective of soft sensors 1s to make this information
immediately available to operators and to advanced process
control systems. Soft sensors combine critical process vari-
ables to infer quality variables such as particle size, flotation
cell air holdup, % metal content in a process stream, inventory,
and many other operational variables required to optimize a
process plant. These estimates can be easily obtained by using
the current analyzers to develop these regression models.

Detection and diagnhosis of process faults and critical con-
ditions are essential for efficient operations. Faults can typi-
cally be determined from the measured data by identifying a
given or normal process operating pattern. If the composite
measurements or indicators fall outside the original or normal
operating pattern, then a fault must be present in the process.
Using time-derived variables or using statistical process con-
trol or multivariate statistical control can become a valuable
tool to perform fault diagnosis and to prevent problems.

Sampling Systems

Mining, mineral, and metallurgical plants and ports require
special sampling systems. Automated slurry sampling to
analysis 1s typically used when systems cannot deliver the
accuracy required to manage the plant. Samples are automati-
cally taken from the slurry streams, then automatically filter
pressed, dried, pulverized, and analyzed, with results quickly
returned to the plant for plan control. Typical systems pro-
cess four feed lines, four concentrator lines, and four tailing
streams, giving the plant metallurgists a picture of the process
every few minutes. All the data are captured by a plant his-
torian at the original resolution in real time. The metallurgi-
cal laboratory manual data are time-stamped for correlation
process data when the sample is taken. A data infrastructure
system can generate quality empirical models to produce lab
estimates from process data. At port laboratories, the entire
process, from sampling to analysis and cargo certification, is
fully automated. In the case of iron ore processing, for exam-
ple, primary cuts of up to | t are taken. Each cut is split within
the sampling system to produce a sample for the automated
laboratory. A portion representing each primary cut is trans-
ported automatically to the robotic laboratory via a conveyor
system. These aliquots are composited and split to produce
sublots. The particle sizes and moisture levels are determined
for each sublot. Depending on the quality requirement, sublot
chemical analysis is carried out; sometimes, however, only a
final composite is done. Chemical analysis as well as particle
size and moisture analysis is performed automatically, with
data then transmitted to the plant control system. There are

variations of sampling, such as truck and train integrated sam-
pling and bulk bag sampling.

There are dry product samplers for primary sampling,
such as heavy-duty rotating samplers, continuous reverse-
discharge samplers, continuous forward-discharge samplers,
and front-discharge cross-belt samplers, among others. There
are also secondary samplers such as Vezin samplers, rotating
plate dividers, and rotating sample divider multi-output.

Slurry sampling and analysis systems with in-line auto-
mated analytical and particle size measurement techniques
are also used. In-line analysis provides very fast feedback for
plant control. There are, however, applications in which offline
sampling and analysis are required. Some examples include
metal accounting or cases in which the analyses cannot be
measured by online techniques or in which online techniques
do not achieve the required detection limits. Applications
include phosphate ore and precious metals.

Typical slurry samplers include primary samplers such
as gravity samplers, linear cross-out samplers, rotary cross-
out samplers, and pipe offtake samplers. Secondary samplers
include gravity samplers, launder (cross-cut) samplers, pri-
mary slurry samplers, two-in-one samplers, pipe offtake sam-
plers, and timed and continuous Vezin samplers.

All mining metallurgical plants require analyses of plant
in-process streams to monitor plant performance. Typically,
automated cross-stream cutters are used to provide shift or
daily composites that are then sent to an analytical labora-
tory for analysis. The turnaround time for plant personnel to
receive the analytical data is typically 24 to 48 hours after the
laboratory receives the samples.

Thus, the data report the past performance of the plant
and cannot be used as a real-time tool to control plant per-
formance. This is where new machine learning tools come in
handy to model the ore types with the process and laboratory
data to determine quality estimates that are modeled and then
used as predictors.

Keeping a plant running at peak performance is mainly
dependent on the skill and experience of plant operators. They
should notice changes, such as the absence of bubbles in a
flotation circuit, and then immediately apply corrective mea-
sures. Advances in video analysis are also being made; opera-
tors can then use video analysis to manage the plant rather
than physically monitor and analyze occurrences.

Specialized Online Analyzers

Online analyzers are available for slurry streams but typically
require a great deal of maintenance, are not very accurate due
to calibration difficulties, and have high detection limits due to
the high dilution factor in the slurry streams. IMP Automation
provides near-online analysis for metallurgical plants for fire
assay (precious metals). X-ray fluorescence spectrometry
using fusion discs for major elements and pressed pellets for
minor and trace elements can also be used (see Braden et al.
[2002] for more information).

However, these analytical methods provide data for indi-
vidual elements. If a process in a metallurgical plant involves
the separation of phases containing the same element(s), these
analytical methods produce less useful data. In addition, online
and in-line analyzers can be used for particulate systems.

Belt product analyzers use advanced neutron-gamma
technology to provide elemental composition measurements
that are both rapid and accurate. This technology uses the
penetrating power of neutron radiation to interrogate a large
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volume of material flowing on the conveyor belt. When neu-
trons interact with the material, gamma radiation is emitted
promptly with energy signatures that are characteristic of ele-
ments present in the material.

Online X-ray diffraction provides information on the min-
eralogy of the product. In-line rapid mineralogical analysis can
significantly improve process control for an improved recovery
and grade. These analyzers can be integrated with sampling and
sample preparation equipment, presenting the analyzer with a
dry representative product for analysis. Robotics technology
is used to automate this process in the laboratory. On-belt
moisture measurement allows for the accurate measurement of
moisture in real time from belt conveyors.

There are many video camera—based particle size analyz-
ers, such as the split online analyzer, which are mounted on
trucks and on belt conveyors in comminution systems. These
provide reduction ratio factors based on the operating con-
ditions and enable improvements from the blast to the final
concentrate products by integrating all data points using a
real-time industrial data infrastructure.

For pyrometallurgical integrated sampling, IMP invented
a special system to automatically sample an Ausmelt con-
verter with a hearth depth of 17 m.

Instrumentation and Devices Network

Some examples of control networks are Profibus, DeviceNet,
Modbus Plus, Ethernet/IP, Fieldbus, and remote input/
output systems. Ethernet networks and security gateways
are typically used for information networks. For more infor-
mation, refer to the studies by Stuffco and Sunna (2002),
Medower and Cook (2002), and Lukas (1986).

PROCESS CONTROL STRATEGIES

This section discusses the types of controls that are needed
to optimize the operations of a process plant. There is a con-
trol hierarchy in the implementation of these controllers.
Regulatory controls govern these controllers, just as the brain
controls the involuntary responses of the body (located in the
brain stem and the cerebellum). As the human body needs to
control its chemistry for dealing with emotions, thus enters
the limbic system. These can be called the body’s advanced
controls, which are based on multivariate controls due to the
integrations of the many variables that need to be considered.
The more sophisticated plant-based controls need to coor-
dinate several process units—from the raw materials, to the
products that provide targets, to all the process units to opti-
mize the plant. This is similar to the function of the thalamus,
which relays sensory impulses from receptors throughout the
body to the brain and controls motor skills, language skills,
vision, and emotions. This is called the performance moni-
toring management system, as shown on the left side of the
triangle in Figure 3.

Process Dynamics

One of the most important aspects in process control is under-
standing process unit dynamics to identify the best way to reduce
the variations of the output or controlled variables to achieve a
certain process business objective. Process response modeling
and analysis can help us obtain this required knowledge.

The process reaction curve is probably the most widely
used method for identifying dynamic models. It enables us to
identify the reaction times between the controlled and manipu-
lated variables. The analysis provides a good foundation for
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Figure 5 Dynamic process reaction curve for modeling and
analysis purposes

coupling the regulatory basic controls and methods to tune a
PID feedback controller. From a steady-state operating mode,
a step change is introduced with the manipulated variable, and
the response data of the process-controlled variables are col-
lected until the process again reaches a steady state. Figure 5
shows the process reaction curve. MVA is the magnitude of the
input change of the manipulated variable, PIA is the magni-
tude of the output or controlled variable, and §'is the maximum
slope of the output versus the time plot. This slope represents
the rate of change or velocity of the response. The sign of this
slope can be positive or negative or both. In addition, the veloc-
ity of the response can be fast or slow compared to other output
variables in the process. The values of the real-time plot can
be related to the model parameters according to the following
relationships for a first order with a dead-time process model.
A typical model of the form y(f) = KpMVA(1 — exp[—(t — 0)/1)]
is used to calculate the parameters Kp, T, and 0. The variable ¢
is the time while performing this response test.

« Kp = PVA/MVA: This constant is called the gain of the
reaction curve.

« 1= PVA/slope of the reaction curve: This time constant is
called the time constant of the reaction curve.

« 0= intercept of the maximum slope: This time constant is
called the delay for reacting to the input.

The process reaction curve 1s a way to obtain basic knowledge
about the controlled and manipulated variables. The typical
process to obtain a process control model is

« Perform step testing,

¢ Perform time domain modeling using curve fitting, and

¢ Perform pseudorandom pulse tests and other frequency
domain modeling.

The following section presents the results of this type of pro-
cess testing based on dynamic simulators and industrial expe-
rience from tests in these types of processes.

Process Knowledge Table for Mineral Processing
Operations

Mineral processing unit operations have many nonlinearities
and interactions that complicate their behavior. This complex

Copyright © 2019 Society for Mining, Metallurgy, and Exploration. All rights reserved.



288 SME Mineral Processing and Extractive Metallurgy Handbook

behavior can be visualized in a process matrix table for pairing
the possible combinations using traditional processing control
loops and adding decoupling actions to compensate for the
behavior. Table 3 shows the typical process output as control
variables measured subject to an increase in the manipulated
variable. It shows the direction of a step response from the
manipulated variables—increase (+) and decrease (—)—and
the speed of the response (slow or fast). The speed of the
response is the combination of the controlled variable and the
manipulated variable. A + and — means that there is an inverse
response. This means that the variable will start going up very
fast and then will decrease, which is called nonlinear behavior.
For example, in a closed-loop grinding circuit, when water is
added to the sump pump, the % solids in the cyclone overflow
will shoot up immediately but will come down once the over-
all circuit settles down. The time is usually about the overall
residence time of the circuit (volume/feed rate)—15 minutes
or so. This table can be validated using the process history
of the variables from a history log to be calculated using a
spreadsheet with mathematical analysis multivariable statisti-
cal tools.

The process response matrices for crushing, ball mill
grinding, flotation, and thickening provide a qualitative guide
to strategy selection. All other factors being equal, it is desir-
able to perform manipulations that will result in the largest
possible change in the process output variable to be controlled
and the quickest rate while minimizing undesirable changes
in the other variables. Without models, this must be translated
into quantitative terms for each application with the possibil-
ity that, under some circumstances, incorrect control actions
may be taken. It is recommended that a clear uncontrolled or
open-loop mode is used while performing the step responses
to perform a test.

Table 3 shows a process control knowledge table that rec-
ommends combinations of controlled and manipulated vari-
ables to comply with process control objectives. It presents
cause-and-effect and speed-of-response scenarios of these
pairings that can be obtained from plant process data or with
process dynamic simulators. In addition to these pairings of
variables, one must take into account additional observed
variables that are used in the diagnosis of process constraints
of the ever-changing operating conditions in a mill due to ore
variability disturbances, the age of the equipment, mainte-
nance issues, and operator strategies. The concept of such a
matrix is important and can provide insight with respect to the
pairing of the variables available in the field. It is a good way
to track the control performance of the process units once the
computer automatically evaluates the parameters.

Table 3 was derived using mineral processing dynamic
models and empirical data collected from plant trials (Herbst
and Bascur 1984; Bascur and Herbst 1985a, 1986). Having the
process control matrix available simplifies the implementation
of both traditional regulatory PID controllers and multivari-
able process controllers.

Regulatory Controls

Regulatory controls are the foundations of process control
and must perform well for supervisory control to succeed.
In a mineral processing plant, this class of control typically
includes flow, level, power, composition, loops, and so on.
These are implemented with proportional integral (PI) con-
trollers that are available in DCS operating software. In some
instances, cascade or ratio control structures are used to

achieve operational objectives. Because PI control has been
well studied and because most instrument technicians and
process/control engineers are exposed to the theory and appli-
cation, it would be logical to conclude that regulatory control
is not usually a significant problem.

Continuous feedback control offers the potential for
improved plant operation by maintaining selected variables
close to their desired values. The PID control algorithm has
been successfully used in process industries since the 1940s
and remains the most commonly used algorithm today. This
algorithm is used for single-loop systems, which have one
controlled and one manipulated variable. Usually, many
single-loop systems are implemented simultaneously in a
process, and the performance of each control system can be
affected by interaction with other loops. As such, one needs
to rely on other technologies to deal with these nonlinearities,
constraints, and interactions.

The Proportional Integral and Derivative Control
Algorithm

This algorithm is based on measuring the error between the
controlled variable, CV(r), and the set point, SP(¢). Based on
this difference, we can calculate the manipulated variable,
MV(1), setting to correct for the error (Marlin 2014). The
error, E(7), is defined in the following equation:

E(1)=[SP(1)-CV(1)] (EQ 1)

Proportional Mode

The first mode to take the control action (i.e., the adjustment
to the manipulated variable) is proportional to the error signal
because as the error increases, the adjustment to the manipu-
lated variable should increase. As such, MV(¢) = KC E(¢) + IP.
This is a very simple way to calculate the moves of a valve,
for example, to control the flow rate of the liquid in a pipe to
maintain the flow at a desired value. KC is the proportional
controller gain, which will need to be estimated to tailor the
controller to the desired level. The controller gain has engi-
neering units of (manipulated variable)/(controlled variable).
IP is a constant or bias that is used during the initialization of
the algorithm.

Integral Mode

Because the proportional mode does not eliminate the error
(because it uses the error to move the output), the next mode
should be persistent in adjusting the manipulated variable until
the magnitude of the error is reduced to zero. These results are
achieved by the following integral mode:

KC

MV(:)=—TT 'E(r)dt+IT (EQ 2)

The new adjustment parameter is termed the integral time, TI,
which has units of time. IT is an initialization constant. The
manipulated variable increases linearly with the slope of E(7)
KC/TL. This behavior is different from that of the proportional
mode, in which the value is constant over time for a constant
error.

Derivative Mode

If the error is zero, both the proportional and integral modes
give zero adjustment to the manipulated variable. This is a
proper result if the controlled variable does not change; how-
ever, when the disturbance just begins to affect the controlled
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Table 3 Process knowledge table for pairing control and manipulated variables

Manipulated Variables

Controlled Variables

Crushing Product Finesse Circulating Load Power Draw Bin Level Crusher Level
Feed rate (%) Fast (0) Slow (-) Slow (+) Slow (+) Fast
Closed-side sefting (£) Fast (~) Slow () Fast () Slow () Fast
Screen area () Slow (-} Slow () Slow (=) Slow (=) Slow
Grinding Product Finesse Circulating Load Sump Level % Solids in Mills

Sump water addition rate (+) Fast (+) Fast (0) Fast (£) Slow

Fresh feed solids rate () Slow (+) Slow (+) Slow (+) Slow

Cyclone feed-pumping rate (£) Fast (+) Fast (-) Fast [+] Fast

Feed water addition rate () Slow (+) Slow (+) Slow (-) Fast

Number of hydrocyclones (+) Faost (+) Fast () Fast (=) Slow

Mill speed (%) Fast (+) Fast () Slow (=) Slow

Semiautogenous Grinding Mill Load Power Draw Product Size

Feed rate (+) Slow (%) Slow (0) Slow

Water addition rate () Fast (+) Fast () Slow

Mill speed (£) Slow (%) Fast (%) Slow

Feed size coarse ratio (0) Slow (+) Fast (+) Slow

Flotation Grade Recovery Froth Depth Air Holdup

Aeration rate [~} Fast (+) Fast (+) Fast (+) Fast

Agitatfion rate (0+) Slow () Slow (+) Slow (-) Slow

Pulp level (-} Slow (+) Fast (=) Fast (=) Fast

Froth addition rate |- Fast (+) Fast (+) Fast (~) Fast

Collector addition rafe {+) Slow (0) Slow (+) Slow

Depressant (+) Slow (-) Slow (-) Slow

Tailings opening gate (+) Slow () Slow (+) Slow

Thickener Sludge Level Settling Rate Torque Underflow Viscosity

Pump speed |- Fast (-) Fast (%) Slow

Flocculant addition rate (-} Fast () Slow (+) Slow () Fast

Rake position (+) Fast (-) Fast [0+) Fast

Feed rate (+) Fast (0+) Fast (O+) Fast (0+) Fast

Rake speed (0—) Slow (+) Fast (+) Fast

Adapted from Herbst and Bascur 1984

Key:

(+) For an increase in the manipulated variable, there is an increase in the controlled variable.
(-) For an increase in the manipulated variable, there is a decrease in the controlled variable.
(£) The controlled variable has an inverse response. It will start one way and then change to another direction. This is a nonlinear response, which is very common

in grinding circuits or systems with a large recycle stream.

& tmeans that the response is quick, and sfer  means that it will take a few minutes.

variable, the error and integral error are nearly zero, but a sub-
stantial change in the manipulated variable would seem appro-
priate because the rate of change of the controlled variable is
large. This situation is addressed by the following derivative
mode:

dE(1)

MV(z)=KCTD a +1D (EQ3)

The final adjustable parameter is the derivative time, TD,
which has units of time, and the mode gain has an initial-
ization constant for the derivative action, ID. The derivative
mode provides rapid correction based on the rate of change
of the controlled variable and can cause an undesirable high-
frequency variation in the manipulated variable. Therefore,
the PID control algorithm can be set as follows:

MV(¢) = KC[%IEUMHTD d%({’) +1

This is the ISA form, also known as the ideal form.

(EQ4)

Control tuning must be performed using the same algo-
rithm that is applied in the control system. The implementation
should be done in a DCS or by using PLCs. This configu-
ration will present several options depending on the type of
hardware. The implementation of the control algorithm will
require presenting the information to the operator, and the
settings available will depend on the overall control strategy.
There are many good strategies to tune the desired PID or PI
controllers.

It is very important to understand the manipulated vari-
able actuator. This actuator is usually mechanical in nature,
so it will have what is known as hysteresis and backlash. This
means that for a given value, it might operate physically dif-
ferently than normal. A process identification of the actuator
is recommended, and an adjustment should be made in the
implementation using the control block of the DCS or PLC.

The dynamic behavior of both the controlled and manip-
ulated variables must be understood to evaluate the perfor-
mance of a feedback control system.
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Regulatory strategies maintain key local operational vari-
ables associated with the different process units in their set
point values, compensating for the effects of high-frequency
disturbances. In addition, they ensure safe start-up and shut-
down, minimizing the risk of damage to people and equip-
ment by keeping the variables within the known operational
and safety limits. The regulatory control strategies act locally,
and they are usually designed around PID controllers and set
standardized control functions such as selectors, multipliers,
time lead or lag functions, and so on. The proper maintenance
of these strategies is fundamental for sustaining any advanced
control strategy. These types of controllers include cascade
controls in which a process flow rate controls the temperature
of a process furnace. Here, rather than acting directly on a
valve, the control design prefers to control the flow, which
will control the opening and closing of the valve to regulate
the temperature of the interior of the furnace. Usually, the pro-
cess controls for overflow density and/or particle size controls
in grinding circuits are driven by a cascade controller for the
water flow controllers, which direct the opening and closing of
the valves. It is easier to control the flow than the position of
the valve (or that of a pump or belt conveyor). It is simpler to
use a cascade controller to control the flow and let the underly-
ing controller do the positioning of the manipulated variables
to open or close the flow with whichever actuator is in use.

Regulatory controls require the tuning of the algorithm
parameters. These are usually obtained from the process
dynamics response using some suggestions provided by Ruel
(2010a, 2010b). Many tuning strategies are available by per-
forming an online Google search. Rice (2015) also wrote a
PID tuning guide.

Multivariable Process Control Strategies

The optimal operation of a mineral processing plant requires
acting simultaneously over different control variables and tak-
ing into account operational constraints. Thus, the objective
of advanced control strategies is to keep the process operating
at near-optimum conditions expressed by a proper objective
function defined in a time horizon. The strategy calculates
the set points of the controllers associated with the regula-
tory strategies to optimize this objective function (Flintoff
1995, 2002; Flintoff et al. 2014; Sbarbaro and del Villar 2010;
Ferrarini and Veber 2009).

A discrete mathematical model is used to predict the pro-
cess responses and calculate over the time horizon the future
control actions based on the available measurements and pre-
dictions of the disturbances. According to model predictive
control (MPC), only the first action is actually implemented,
and the optimization process is repeated at the next sampling
time. In these strategies, the dynamic process model is very
important because it is used explicitly in the calculation of the
control variables. Good mathematical models are necessary
for the successful implementation of a model-based control
strategy. The parameters of simple models can be obtained
by performing a dynamic test during the process or by using
open-loop historical data. As in regulatory strategies, it is
very important to establish proper maintenance procedures
to update the models and check the tuning of the different
parameters associated with the control strategy. MPC models
are obtained based on the process matrices shown in Table 3.
There is a relationship between the controlled variables y(z)
and the manipulated variables u().

Effective MPC depends on a model that is representative
of the process dynamics. After several months, the process
tends to differ enough from the model that performance dete-
riorates. Determining a good model that matches the current
process is a challenge that can be easily overcome by using
current data analytics capabilities.

Holistic and Expert System Process Controls

If the process models are difficult or impossible to obtain,
then the control strategy can rely on the knowledge of an
operator or an expert in the field to calculate the control
variables. This knowledge is expressed in terms of rules
describing the experiences of the operator. These heuristics
are written in statements with an if—then form. A set of rules
constitutes the knowledge base required to control a given
system. Because the expert knowledge is expressed in lin-
guistic terms, a suitable framework to describe the ambigu-
ity of the natural language is provided by fuzzy logic. Even
though these strategies can deal with complex control prob-
lems, they cannot be easily extended to multivariable systems
with many inputs and outputs. In addition, because they do
not use detailed information about the evolution of the pro-
cess and/or disturbances, their performance is no better than
the one obtained by model-based strategies.

The decision to use a model-based approach or a rule-
based approach depends on models. If the process and dis-
turbances can be modeled, the controller will be developed to
handle constraints, combat disturbances, and react accordingly
to expected performance. If the process cannot be modeled,
can the operator be modeled? If so, a rule-based approach can
be used and the controller will mimic the best operator.

Instead of using process models, these types of controls
use process rules based on heuristics and fuzzy logic controls.
In rule-based approaches, an expert operator manipulates set
points on control loops. A fuzzy control system is a control
system based on fuzzy logic; decisions are made using analog
inputs that represent a value ranging from 0 (false) to 1 (true).
The logic deals with partially true and partially false values. In
many projects, the result will be a combination of model- and
rule-based systems.

Time-Derived Variables

Time-derived variables are used in operator mimic controls
and in fault diagnosis procedures. Object-oriented expert sys-
tems are discussed later. Using an industrial data infrastruc-
ture that provides the analytics and the data-derived process
algorithms allows for a smoother implementation of dynamic
process analytics, and it is easier to maintain the analytics in
the long term. This also allows for the classification of data
to implement model-based inferential controls. Table 4 lists
several time-derived variables and observed variables that are
used to develop process specifications and detect abnormal
situations (Bascur 1990a, 1999). Many algorithms are avail-
able to filter the process signal to eliminate noise and to infer
additional information from the raw data (Otnes and Enochson
1978; Bascur 1988).

Example for MPC Strategy Implementation of SAG

and Ball Mills

Figure 6 shows a typical SAG and ball mill control strategy
(Henriquez et al. 2012).
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Table 4 Time-derived variables used in digital control systems and real-time information systems

1-Hour Standard

Measured Variables Snapshot Moving Average (time) Rate of Change (time) 1-Hour Average Deviation
Temperature High High High rate Medium Maximum
Flow 1 Normal - - - -
Level — - — - —
Flow 2 Normal — — - —
Flow 3 Normal - - - -
Press 1 - High High rate High Maximum
Press 2 — High - High Maximum

Additional Information

Weather: Rainy/sunny/cloudy
Unit location: Geographical coordinates

Unit age: Old/middle/new/unknown
Number of cells in series: Few/many/very many

Source: Bascur 1990b

Process Control Objectives

The objectives of process control are to maximize throughput,
decrease variability of the product size and % solids to flota-
tion, improve overall equipment availability, and reduce spe-
cific power consumption. The implementation of the control
strategies consists of three steps:

1. The first step focuses on the standardization of the pro-
cess measurements and process knowledge through char-
acterization of the disturbances and the manipulated and
controlled variables.

2. The second step focuses on the reduction in process vari-
ability by properly selecting the manipulated variables
and providing extensive operator support to test and tune
the system.

3. The third step consists of process optimization by collect-
ing stable metallurgical results, managing process flow,
and maximizing throughput while optimizing particle
size (P80).

The main characteristics of process control are as follows:

«+ Particle size control is based on the main hydrocyclone
pressure. Solids concentration control maintains the
pump box to prevent overflowing or pump cavitation.

¢ Fine hydrocyclone pressure control is obtained by manip-
ulating the pump speed; coarse pressure control is regu-
lated by the available number of hydrocyclones. Thus,
depending on the incoming feed flow, more or fewer
open hydrocyclones will be required to maintain the same
working pressure.

« Solids concentration control (% solids) is obtained by
manipulating dilution water to the pump box.

« It has intelligent hydrocyclone rotation control and moni-
tors the running hours for each hydrocyclone (for mainte-
nance purposes). The system also tries to keep at least one
hydrocyclone available.

» The operator sets the desired working pressure and den-
sity. The proper selection of both parameters and stable
control (provided by the MPC) will result in an optimal
working P80.

e In the case of two running hydrocyclone batteries, the
number of open hydrocyclones in each battery is equal-
ized (to balance throughput).

* The control strategy uses a combination of MPC and
expert logic for adapting to the changing conditions of
the feed flow and the available hydrocyclones.

In the case of the P80 variability from the data feed of the
rougher flotation line, Figure 7 shows the improvement results
for circuit 8 with the use of the MPC systems for two consecu-
tive periods (69 days each). Despite the increase in the mean
value from 197 um to 217 pm, the variance decreased by 54%.
The plant tonnage operating range is 145,000 to 200,000 t/d,
the hydrocyclone pressure is more than 68.9 kPa, the hydrocy-
clone feed % solids is more than 50%, and the sump box level
is more than 70%.

In conclusion, the MPC system reduces variability in pres-
sure and % solids in the hydrocyclone batteries. The reduced
variability allows for reduced variability in the P80 to flota-
tion and thus leads to a better metallurgical performance. The
reduced P80 variability enables the reduction of pulp trans-
portation flow variability, therefore improving the dewatering
process. Reducing the variability is the main control objective
of the MPC implementation. This MPC enables the operation
to approach the operating constraints to optimize the process.

Additional comminution circuit process control strate-
gies are discussed by Bascur (1990b, 1991b) for traditional
grinding mills and by Edwards et al. (2002), Karageorgos
et al. (2001, 2006), Fuenzalida and Olivares (2012), Baas
et al. (2014), and Ruel (2012) for SAG and ball mill grinding
circuits.

Example of a Copper Flotation Rougher and Scavenger
MPC Implementation
The flotation process is a complex physicochemical process
(Fuerstenau 1999). Table 5 lists the many operational variables
that influence the flotation of minerals. The detailed dynamic
process shows that it is a zero-order process that is controlled
by the interface between the froth and the pulp (Bascur 2005).
A zero-order process is unstable by nature. A flotation model
is a dynamic process where the froth interface is always in a
dynamic state, receiving bubbles with attached particles and
draining them back to the pulp hydrophilic particles. A flux
model defines the hydraulics of a flotation system. As such,
maintaining a proper interface and froth height is crucial for
the cleaning action in a flotation cell. The attachment and
detachment of particles in the pulp zone are attributed to the
physicochemical characteristics of the minerals and the tur-
bulence in this zone to achieve bubble generation and the
bubble—particle attachment (Bascur 2010, 2012).

The most important control variables for the flotation
process are categorized for process control and optimization
as disturbances, measured variables, manipulated (physical
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Figure 6 Example of SAG/ball mill multivariable process controller at Minera Los Pelambres
in Chile
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Figure 7 Ball mill hydrocyclone pressure, % solids, and product size P80 results before

and after MPC implementation

and chemical) variables, and controlled variables, as shown
in Table 5.

The flotation process is highly multivariable, which
means that there are strong couplings between the various
control variables and the important stages of the process. The
choices depend on the particular design and application of the
flotation system and the materials to be separated.

Controlling an entire flotation circuit correctly is still one
of the most difficult process control problems in a process-
ing plant. Figure 8 shows a typical flotation circuit, including
the rougher section, the scavenger circuit, and the concentrate
cleaner circuit.

It is difficult to control a flotation circuit because the
majority of the measurements that are required for control
rely on various analyzers and instruments that require regular
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Table 5 Variables of importance for a flotation process

Disturbance Variables Measured Variables

Mineralogical composition Metal analysis

Degree of surface oxidation Volumetric flow rafe
Fluctuating feed size distribution Pulp densities

Surface modifications Size distribution

Fluctuating feed rate Pulp level
Fluctuating feed compaosition Froth level
Pulp viscosity and density Eh and pH

Collector addition
Frother addition
Power infensity

Water characteristics

Manipulated Variables

Physical Chemical

Frother addition rate
Collector addition rate

Medifier addition rate
(activation, pH, efc.)

Airflow rate

Pulp level
Impeller speed
Conditioning time

Stream diversion Reagent addition points

Froth sprinkling rate Electrochemical potential
Coarse/fine split

Controlled Variables

Feed % solids
Pulp level

Recovery
Grade
Tonnage throughput Feed size distribution

Circulating loads

maintenance and calibration checks. Sometimes the regular
maintenance checks or required calibration checks are forgot-
ten or delayed in a maintenance schedule, resulting in these
measurements becoming unreliable. When they become con-
sistently unreliable, the control system cannot operate cor-
rectly, and the control room operators then tend to run in
manual mode.

Even though correct flotation control is one of the most
difficult control problems in a processing plant, if each
required flotation control function is broken down into man-
ageable “bite size” control strategies, it is possible over time
to develop a robust flotation process control system that high-
lights the required critical measurements as each part of the
flotation control strategy is implemented. By implementing
such a control system over time and breaking the system down
into various sections, the value to the business of each of these
parts can be demonstrated and thus justified. With this, the
cost of the aforementioned required maintenance and calibra-
tion checks can then be justified to management and scheduled
as part of a routine preventive maintenance plan.

The control functions that are required to develop a good
robust flotation control strategy can be divided into three parts:

1. Interface-level stabilization control for each flotation
section,

2. Rougher and scavenger mass pull with grade/recovery
control as limits, and

3. Cleaner and recleaner grade/recovery control.

The first two control functions are relatively easy to design
and commission; however, designing and implementing the
third function of cleaner and recleaner grade/recovery con-
trol is more complicated. Baas et al. (2007) describe good,
robust grade/recovery control as the “holy grail” of flotation

control. Figure 9 shows a schematic of how the first two levels
of flotation control are broken down into manageable bite-size
functions.

Grade/recovery control is so complex because the recov-
ery of some minerals, especially those that are finely liberated,
can be affected by factors such as surface and pulp chemistry
changes. To date, there have been very few methods of suc-
cessfully measuring the required pulp chemistry parameters.
(Some companies can successfully measure the pulp chemis-
try; however, these companies are in the minority.)

Even when some of these chemistry parameters are suc-
cessfully measured online, attempting to control these has
proven to be difficult because the effect of changing the pulp
chemistry does not lead to consistent changes to the grade/
recovery in the cleaner and recleaner circuit.

In recent years, new instruments and analyzers have
been developed that can help accurately measure some of the
parameters in a flotation cell; previous methods were either
unavailable or only somewhat reliable. These parameters
include the actual particle size of the fine fractions, the verti-
cal and horizontal bubble velocity in the froth zone, the froth
depth and froth density, the pulp depth and pulp density, and
the chemistry of the pulp zone. As these new instruments are
introduced and tested, flotation control will likely become a
less complex and difficult process. Processing plants take the
regular maintenance of these new analyzers and instruments
quite seriously.

There have also been advances in froth video analysis in
the control of flotation circuits. An additional sensor can pro-
vide more information in order for the plant to manage the
cleaning action of the froth and to stabilize the flotation mass
balance of the flotation banks. Kewe et al. (2014) incorporated
froth visualization analysis to improve flotation circuits using
a combination of froth visualization and a professional control
system.

For additional information, refer to the studies by
Johansson et al. (1999), Herbst and Pate (1999), Herbst and
Harris (2007), and Baas et al. (2014).

Example of Thickener Multivariable Process Control

Developing thickener control is similar to the Cinderella story
(Karageorgos et al. 2009; Weidenbach and Lombardi 2012).
To date, the majority of the process control applications on a
mineral processing site have predominantly focused on SAG
mill control, general grinding circuit control, and various
aspects of flotation control. Unfortunately, control of thick-
eners and countercurrent decantation (CCD) circuits is only
performed well by a small number of companies worldwide.
Thickeners are zero-order processes, which are unstable by
nature. The generation of an interface is modeled using a flux
curve (Concha 2014). Bascur and Herbst (1986) implemented
an industrial variation of an online model to obtain additional
information for the thickener inventory, the interface level,
and the torque of the rake. This online model was very use-
ful in identifying the many variables that affect the thickening
operation. The most important factors are the large variations
of the mineral specific gravity and the amount of clay in the
feed, which affect the overall behavior of the thickener under-
flow density and rheology. However, in this model, the addi-
tion of flocculant was not capable of aggregating the particles
to control their settling rate. In addition, changes to the feed
well design were necessary. An inventory prediction was used
to modify the scheduling of the plant, which was constrained
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Figure 8 Typical copper flotation circuit

by the capacity of the pipeline due to the large variations in
the underflow product.

Those who have the opportunity to begin the process of
controlling a thickener or a CCD circuit will go through sev-
eral stages. At first, the initial perception may be that control-
ling a thickener is easy, but this perception soon ends with the
realization that obtaining good thickener control is more dif-
ficult than SAG mill or grinding circuit control and even some
parts of flotation control. Once one begins to develop and
implement thickener control, the process may be considered
to be refreshing and exciting. Because there has been very
little published in textbooks or studies on thickener control,
it can be exciting to work with innovative technology. New
concepts have to be defined, developed, and implemented to
improve good thickener control and eventually create excep-
tional thickener control.

As with controlling any unit process, the first step is to
define the outcome that is required and how this will benefit
the processing plant. Improving the control on a thickener is
initially performed to improve the amount of process water
that can be recovered; another important benefit is the ability
to treat a higher throughput than what was previously achiev-
able without good control. A reduction in flocculant of approx-
imately 20% to 30% can also be achieved, which is important,
as this is a consumable.

The objective of thickener control is to improve the
amount of water that can be recovered; this then translates to
improving the underflow density. Therefore, it would follow
that underflow density control should form a major part of the
thickener control strategy; however, a paradigm shift must be
realized.

As a general rule, it is not possible to directly control
the density of any given thickener, and any thickener control

strategy that mainly relies on thickener underflow density will
mevitably fail or operate poorly.

To design and implement a robust control strategy for a
thickener, three main objectives must be achieved:

1. Correct inventory control (it is important to measure the
inventory correctly in a thickener)

2. Particle settling control

3. Thickener protection control

The underflow controller monitors the mud level (the true
compacted bed level), the rake torque, the bed pressure, and
the underflow density. It calculates the optimum underflow
flow rate (manipulated variable) to achieve the best underflow
density (controlled variable subject to the other constraint
variables) while safely maintaining the thickener.

A key sensor was developed to measure the density pro-
file of a thickener called SmartDiver. The SmartDiver is an
instrument patented and made by Precious Light and Air. The
SmartDiver uses an ultrasonic probe to measure the clarity of
the liquid. The probe is lowered and retracted by a cable drum
into the thickener approximately every 5 minutes, depending
on the rake position (Weidenbach and Lombardi 2012).

The flocculant controller examines the settling band (con-
trolled variable) within the thickener, the thickener overflow
clarity, and the rake torque. It calculates the optimum floccu-
lent rate (manipulated variable) to achieve the required parti-
cle solids settling rate (controlled variable subject to the other
constraint variables) just above the compacted bed.

The three aforementioned thickener control strategy
requirements do not address underflow density control (Hartog
etal. 2014; Weidenbach and Lombardi 2012). Figure 10 shows
a process graphic for the implementation of a multivariable
thickener control strategy using the Manta Cube system. This
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rougher and scavenger circuit

multivariable control strategy has improved the stability of the
underflow density by 70%, reduced the risk of bogging the
tailing thickener, reduced the reliance on the water supply, and
improved water recovery rates.

Once one has realized the paradigm shift, it becomes
clear that improving the underflow density simply depends on
correctly controlling the thickener. That is, once the inventory
is controlled correctly, the particle settling is controlled cor-
rectly, and the thickener protection control is implemented,
the thickener will operate in a more stable and reliable man-
ner. The suggested control hierarchy allows the particles to
settle and compact correctly, which all translates to improved
underflow density control. The thickener can then safely pro-
cess a higher throughput than would be possible without the
aforementioned control strategy in place.

Additional thickener controls are described by
Schoenbrunn et al. (2002). The authors use an expert system
strategy and present a good overview of the process instrumen-
tation and the rules to consider to meet the control objectives.

Example of a Gold Cyanide Leach Multivariable
Controller

Figure 11 shows a graphical interface that illustrates the
implementation of a multivariable control strategy for gold
cyanide leaching as reported by Hartog et al. (2014). The
leach circuit consists of two leach tanks (TA-111 and TA-112)
and seven absorption tanks. The slurry is fed to the leach feed
thickener, and after leaching the slurry flows to the tailings

thickener. The cyanide leach is supplied to the leach circuit by
two variable-speed pumps in a standby configuration (manip-
ulated variable). The barren eluate from the elution circuit is
returned as a batch to the first leach tank.

Originally, the cyanide in the solution was measured in
the first leach tank by a Cyantist cyanide analyzer. The cya-
nide concentration was originally manually controlled by the
control room operator. The operator would manually adjust
the cyanide flow rate into Tank TA-111 depending on the cya-
nide concentration in Tank TA-111.

In 2012, a process control strategy configured an auto-
matic cyanide concentration sample-and-hold controller that
automatically determined the required cyanide solution flow
rate depending on the cyanide concentration in Tank TA-111.
This flow controller adjusted the speed of the standby cya-
nide pump to maintain the desired cyanide flow rate set point.
The control system was configured so that the cyanide flow
rate was stopped when the measured cyanide concentration
reached a certain limit.

The cyanide set point for the first leach tank would be set
with the aim of achieving a desired cyanide profile across the
adsorption tanks. When the measured cyanide concentration
showed large-amplitude cycles, the sample-and-hold control-
ler were retuned to achieve better control.

Improved process control in the cyanide leach circuit
involved both equipment and control strategy changes. With
the Cyantist cyanide analyzer and the associated sampling
system at the end of its maintainable life, the analyzer was
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replaced by a Cynoprobe cyanide analyzer (sensor and con-
trolled variable). This new cyanide analyzer was configured
to draw samples from the first leach tank, the second leach
tank, and the final adsorption tank. To expand the flexibility
of the cyanide dosing, new cyanide dosage points were added
to the second leach tank and the fourth adsorption tank that
consisted of a flowmeter and flow control valve.

A cyanide leach multivariable controller called Manta
Cube was configured to determine the cyanide solution flow
set point for the first and second leach tanks and the cyanide set
point for the second leach tank based on the cyanide measure-
ments from the cyanide analyzer. The multivariable control
strategy for the cyanide leach may be configured for cyanide
dosing to the first leach tank only, split cyanide dosing to the
first and second leach tanks, or control of the cyanide level in
the leach circuit tail. The multivariable controller leach system
for cyanide addition was commissioned in conjunction with a
new free cyanide analyzer. The cyanide multivariable control-
ler was installed to ensure that maximum gold recovery was
obtained in the leach circuit while cyanide use was minimized.

Following the commissioning period, a significant reduc-
tion in the variation of the free cyanide measurement was
observed. As a result of this decreased variation, the free cya-
nide set point could be reduced, as there was confidence that
the system would maintain free cyanide levels at or above
those required for effective leaching. The free cyanide set
point was reduced from 600 ppm in December 2012 to cur-
rent levels of 450 ppm. Following the commissioning of this
system, a clear reduction in cyanide consumption of 0.18 kg/t
(>10%) was observed. This was due to both the reduced free
cyanide set point and the reduced process variable variation,
resulting in less cyanide waste.

The net present value for the reduction in cyanide con-
sumption is calculated using a 5% discount rate for the current
5-year mine life based on the data and assumptions. The net
present value is calculated to be approximately $1.9 million
for the $150,000 capital project, with a payback period of only
106 days.

The work by Bascur et al. (2008) and Steyn et al. (2018)
provides additional details about hydrometallurgical process
plants.

Pyrometallurgy: Implementation Example of an
Integrated Furnace Electric Arc Controlp for Ferronickel
The efficient operation of a shielded-arc smelting furnace
requires good control of the power and feed delivered to the
furnace to maintain the arc cover and the slag bath temperature.

The electric power input to the furnace has two compo-
nents: arc power and bath power. Figure 12 from Voermann
et al. (2004) shows the arc power labeled as Pa. This is power
delivered to the furnace by the long, powerful arc between the
electrode tip and the surface of the slag bath. The slag bath
has an average height (ys), as shown in Figure 12. The charge
material covers the electrode tip, and the arc power heats the
charge. The bath power is labeled Pb. This is power delivered
to the slag batch by the resistance or Joule heating caused by
the electrode current flowing through the slag level.

The furnace power controller is part of the integrated con-
trol system that regulates the power delivery to the furnace.
The furnace power controller controls not only the total power
delivered to the furnace but also the power balance between
electrodes and the ratio of the arc to bath power (Pa/Pb). The

ratio of the arc to bath power is a critical control parameter:
Too little slag bath power will make the slag colder and more
viscous, making it more difficult to cleanly separate the matte
or metal and also difficult to tap. Too much slag bath power
will increase heat transfer from the furnace walls due to
increased slag temperature and more vigorous stirring. This
increased heat flux results in increased refractory wear and
excessive furnace losses, according to Janzen et al. (2004).

The furnace feed material—or calcine—is supplied from
arotary kiln and stored above the furnace in the feed bins. The
hot calcine in the feed bins is metered into the furnace through
feed ports in the roof of the furnace, as shown in Figure 12.

The heat in the furnace crucible is shown in Figure 12 as
the bottom heat losses (Qbottom) and sidewall losses from the
metal and slag levels (Qmetalsidewall and Qsidewall, respec-
tively). The tapped slag (msarc + msbank at Tsbulk) and the
tapped metal (mmarc + mmbank at Tm) also lose heat. The
slag and metal accumulation in the furnace are represented by
the slag height (ys) and the metal height (ym), respectively, in
Figure 12.

The furnace incorporates a significant number of instru-
ments to provide a great deal of information about the process.
Some of the instruments on the furnace are

* Power consumption meters,

« Electrode slip meters,

* Load cells on the feed bins,

« Water temperature thermocouple at the entrance and exit
of each water-cooled element,

« Water flowmeters at the entrance and exit of each water
flow circuit,

* Two level refractory thermocouples,

» Furnace pressure monitor,

« Furnace temperature thermocouples,

+ Airflow meters, and

= Air thermocouples.

For maximum production and efficiency, coordinated control
software architecture is needed.

The integrated furnace control system for the furnace
includes five main modules or controllers;

1. Power controller: The power controller provides operat-
ing points tailored to the measured slag batch resistance.

2. Feed controller: Feeding is based on the actual amount
of material charged (using bins on load cells) and the
actual power delivered to the furnace.

3. Online heat balance module: This continuously moni-
tors surface temperatures, water flow, and temperature
increases to calculate energy losses and adjust the power
and feed balance accordingly.

4. Slipping control: A slip is recommended for each elec-
trode based on actual conditions (power, current, limit
switches).

5. Supervisory controller: The supervisory controller
coordinates the work of other controllers.

These modules are described in detail in the study by Janzen
et al. (2004).

The furnace power controller controls the total power
delivered to the furnace to

» Control slag bath power to maintain target metal and slag
temperatures and acceptable sidewall heat flux,
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Figure 12 Ferronickel furnace diagram

« Provide stable long-arc operation to enable high furnace
power production without excessive sidewall heat flux,
and

+ Reduce the occurrence and duration of loss of arc.

The power controller is used to control the power delivered to
the furnace, including balancing the power delivered by the
three electrodes and controlling the ratio of arc to bath power
(Pa/Pb).

The feed control system distributes the charge to maintain
a covered-arc operation, which is vital to a stable, reliable, and
efficient operation.

The online heat balance (OHB) module tracks the energy
losses from the furnace and estimates the metal accumulation
in the furnace. The OHB module also collects sensor data to
establish and track the furnace net specific energy use in terms
of kilowatt-hours per ton (kW-h/t). Heat from air infiltration
and electrode consumption are also accounted for.

The furnace supervisory control module provides overall
control of the furnace and governs the interaction between the
various modules of the furnace control system. The furnace
supervisory controller integrates and coordinates the feed con-
troller, the furnace power controller, and the online furnace
heat balance. The feed rate and net specific energy require-
ment (kW-h/t) are used to determine the power set point.

The automatic electrode positioning and feeding used on
the furnace provide stable operation at the design power of
75 MW. The integrated control system provides the opera-
tors with both control and process control information for

optimizing the overall metal production. It enables the opera-
tor to increase the power with minimum excursions and upsets.

Another advanced control module is used in plants where
there are several furnaces on the same high-voltage bus. This
module balances the total power draw of a group of furnaces.
For example, if an electrode on one of the furnaces strikes
a limit switch and as a result unbalances the furnace power
draw, the individual electrode set points on the other furnaces
on the grid are temporarily altered to balance the total draw of
all the furnaces (Voermann et al. 2004).

In a smelting furnace, the ratio of arc to slag bath power
is one of the key parameters. If the power delivered to the slag
bath is too high, the slag bath temperature and stirring will
increase, resulting in increased refractory wear. If it is too low,
the metal and possibly the slag will be too cold and difficult to
tap. Hatch has developed a system to provide an online esti-
mate of slag bath resistance; this system has been installed on
several smelting furnaces.

For nonferrous metals, additional information can be
found in the study by Boulet et al. (1997). Tan and Vix (2005)
also report advances in controlling the magnetite formation in
copper converting.

Maintenance of the Instrumentation and Process
Control Systems

Mineral processing and extractive metallurgy process control
and instrumentation present unique challenges in the main-
tenance of process measurements and control devices. The
typical harsh environment and difficult process conditions
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require special consideration of the ruggedness, reliability,
and maintainability of these devices. Most advanced control
strategies fail due to lack of maintenance, being in the wrong
location, and incorrect calibration of the sensors and instru-
ments. Sienkiewicz (2002) provides some guidelines:

» The controls should be regarded as another part of the
process and must be used and maintained.

« Annual maintenance and support should be established in
the initial plans and likely reinforced to obtain the highest
return on the capital and intellectual investment.

* A maintenance program should be designed and imple-
mented that will allow for preventive maintenance of the
systems, instruments, controls, and operator interface. A
program for change management should be put in place
to keep up with expansions and modifications.

» Treat sensors and field devices as critical plant assets if
good control usability and performance are to be achieved.
Planned maintenance causes the production availability
of particular equipment to decrease to approximately
90%—95%. Unplanned downtime may reduce equipment
availability by another 5% or more. Low availability
and unplanned downtime translate into lost production
opportunities that can represent a significant portion of
revenues and profits. In fact, unplanned downtime is one
of the largest factors that erode production performance.
Combining the maintenance of the instrumentation and
process controls into a condition-based maintenance pro-
gram is recommended.

The following section provides additional information
on enhancing the traditional maintenance and tuning of the
process control algorithm by instituting regular maintenance
and performance monitoring of all instruments, actuators,
and control algorithms. A change management policy and
updates of these vital procedures should go hand in hand with
the Occupational Safety and Health Administration (OSHA)
29 CFR 1910 (OSHA 2017a) and Process Safety Management
for Petroleum Refineries guidelines (OSHA 2017h).

PLANT OPERATIONAL INTELLIGENCE MANAGEMENT
Today, operational efficiencies (such as improved equipment
availability and use, increased tonnages, and reduced dilu-
tion) are necessary to increase production and lower operating
costs in mining, mineral, and metallurgical processing plants.
In addition, continuous improvements, innovation, and under-
standing where opportunities exist are the key to increasing
profits. This is where measuring, managing, and maximizing
mineral/metallurgical performance is enabled by using an
industrial data infrastructure. Transforming the sensor data
into performance metrics becomes a reality. To do so, a data
hierarchy strategy like the one shown in Figure 13 is needed.
Real-time streaming data are transformed into information by
using online analytics, generating operational events to aggre-
gate the production and consumable data into improvement
workflows generated by the automation of current operational
knowledge. The classification of the data enables us to aggre-
gate the data at the desired level of detail to determine where
opportunities for improvement are. As such, collaboration
among production, economics and planning, maintenance,
and all the safety and environmental support become active
and not passive as they were in the past.

Figure 13 shows the various levels that can be included in
the implementation of process controls and plant management
(Bascur 1988, 2016; Bascur and Kennedy 1999). Figure 14
shows a typical process control network with the process
information and enterprise network integration. On the left
side are data collectors within the systems. The security of the
process control network is protected by a demilitarized zone.
In the plant information network, the servers that manage the
streaming data, the relational information, and the context
data model feed the local data visualization and analysis tools
to local users. This level feeds the enterprise global server
information for integration with the enterprise resource plan-
ning (ERP) or a connection to the cloud for external services
collaboration.

All the data are captured by sensors through the diverse
control systems. These are specialized data acquisitions and

Raw Materials
| Data Acquisition
Data
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| Data Validation
Object || Class Analysis
Model
Model Estimation
| Process Coordination
b Plant Optimization
Databases Context

- . Products

Analytics

Visualization and Action

Source: Bascur 2016

Figure 13 Data hierarchy infrastructure for transforming data into actionable information
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Figure 14 Typical process controls and data management infrastructure

control devices that reside near the process equipment or in
mobile equipment. These control systems are integrated with
PI data servers. The first level is the traditional process control
level. This is where the process equipment is regulated for
stabilization, start-up, and shutdown of the units. Data valida-
tion is required to check the validity of the sensor signal. This
is required when advanced process controls are implemented.
Data are classified to coordinate the integrated processes for
overall plant optimization. Data modeling is conducted when
an operating mode is known to perform performance calcula-
tions, such as equipment condition alerts, process efficiencies,
energy management, and estimation of inferred process vari-
ables based on line process models or real-time simulations.

Process coordination is used to integrate the chain supply
to extend the analysis from all processes (such as in a mine to
a mill to a port, for example). Mine-to-mill business analy-
sis and mine-to-mill mass balancing are discussed later in the
chapter.

Once the process chain is well tuned, chain supply opti-
mization becomes a reality. Through energy and mass balanc-
ing, it is now possible to identify opportunities to move closer
to operating constraints. Operational (real-time) data can be
used to explore new opportunities while using business analy-
sis, visualization, and analysis of data and events.

Table 6 summarizes the three types of enhanced initia-
tives for real-time process improvements and production and
operations management using operational data (Fountaine
2014). The table provides real-time operations information,
process improvements based on abnormal evaluations, and
traditional production and operation management reports.

For daily and real-time operations, basic users will benefit
from all the visualization tools that have been discussed so
far. These users include operators, craftsmen, and supervisors.
The visualization objectives are to achieve daily targets,
resolve immediate issues, maintain scheduled plans, and
follow environmental regulations. However, users can also
benefit from using a context data model of the plant. Users
can receive real-time alerts and notifications, and different
functions can collaborate automatically.

The process stability and improvement team usually con-
sists of process engineers (local), production superintendents,
and center of excellence experts (either regional or global).
These are whom might be considered expert and advanced
users. Their objectives are to detect process or equipment
excursions and develop analytics to configure online perfor-
mance equations and notifications. These users also maintain
process stability by implementing condition-based equipment
and process monitoring and diagnostics; maintain process
control performance, as described previously; and maintain
and plan for production and quality improvements. This team
should be directly involved with the economics and plan-
ning team to improve scheduling activities and to update the
optimization parameters of the forecasting models. This will
involve periodic support to the operations and management
teams. Continuous improvement and innovation are required
to achieve a successful operational excellence program
(Bascur 2016).

The production and operations management team is com-
posed of local managers, regional and global managers, and
business leadership. This team uses the system on a daily and
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Table 6 Real-time analysis and reporting strategies for operational intelligence

Strategy

Real-Time Operations

Process Improvements

Production and Operations

Usage Actionable Information Analysis Management Reporting
Frequency Real time fo daily Daily to annually Daily to monthly
Type of tool  Visualization tools Analysis fools Reporting tools
Audience Operators Process engineers Local managers
Craftsmen Production superintendents Regional and global managers
Supervisors Center of excellence experts Business leadership
[regional and global)
Objectives Achieve daily targets Detect excursions, root cause  Understand grade performance

Resolve immediate issues
Maintain scheduled plan
Maintain safe operations

compliance

analysis
Maintain process stability
Reduce operating costs
Achieve environmental regulations  Improve productivity
Improve quality

Adjust expectations
Establish plans

Calculate forecasts

Adapt for business long ferm

Source: Bascur 2016

weekly basis to assess the overall performance of the plant
and collaborate with external support teams. These users also

» Define the grade performance based on the raw materials
and customers’ quality and delivery requirements;

* Define the production plan and operations targets;

* Review improvement initiatives for the operational intel-
ligence team;

* Interact and collaborate strategically on a daily and
weekly basis rather than monthly, as has been done in
the past; and

= Work with the operational intelligence team to improve
their forecast and projections based on the current state of
the plant’s operating conditions and local environmental
and safety regulations.

A competency center usually exists where mine and mill activ-
ities are coordinated and where integration with the business’s
ERP transactional systems is provided.

Figure 14 shows the integration of process controls with
a data management infrastructure. The left side of the diagram
shows the types of data providers using interfaces and con-
nectors to capture data in the PI system. The asset framework
organizes the data, analytics, and event generation to transform
data into operational insights. Once the data are transformed
into operational insights, they are visualized and analyzed by
client-based tools such as PI Vision or Microsoft Power BIL.
The data are made available through PI integrators to ERP
systems such as SAP, geographical information systems such
as ESRI, and cloud systems such as Microsoft Azure.

The most common way to organize contextual data is to
use the ISA standard guidelines provided by the S95 Enterprise
to Device model of the American National Standards Institute
(ANSI/ISA-95 and ANSI/ISA-99), as shown in Table 7. Using
common process industry practices, as presented by Turton
et al. (2012), is also recommended; these are basic methods
for process analysis and the optimization of processing plants
from a chemical process viewpoint.

Collaborative Operational Performance Management

Process engineers assigned to a unit area are responsible to
track and improve key metrics using process performance
monitoring. Having real-time data and events available sim-
plifies efficiency calculations and yields calculations for con-
stant evaluation and improvement. For example, in a mineral

processing plant, it is important to maximize grade recovery
and to find the best cut size for grinding to lower energy and
water costs. It is in this area where process engineers can
implement statistical process control, fishbone analysis, and
multivariate statistical monitoring and diagnosis using princi-
pal component technologies, which require data and advanced
product quality estimators for advanced control implemen-
tation. With today’s open systems and technologies, process
engineers can also connect to process simulators to provide
estimates based on process data to optimize process condi-
tions and improve control strategies.

Improvements in thickening process control and avail-
ability and dewatering processes can be enhanced by analyz-
ing geometallurgical data and using real-time operating control
strategies to optimize water recovery and tailings disposal.
Tailing impoundment remote operating conditions are now
monitored carefully to manage mine and mill environmental
performance, risks, and compliance to governmental and com-
munity regulations. In the mining industry, pumping tailings,
which consist of ground rock and process effluents, present
several challenges to operating personnel. Online real-time
monitoring of pumps is now feasible using condition-based
monitoring strategies. These strategies combine real-time pro-
cess variables such as flow rates, pump motor amperage, run-
ning time, pressure, temperature, % solids, pump vibration,
oil ferocity, and other measurements to reduce leaks, increase
operational availability, decrease maintenance costs, and
diminish safety incidents by preventing downtime.

The field of multivariate statistical process control
enabled by industrial data infrastructures has been grow-
ing in recent years. Principal component analysis methods
enable the reduction of a set of variables to the minimum level
required to discover unusual process events that may occur
during regular operations. A good example of this is the imple-
mentation of caster breakout by ArcelorMittal Dofasco at each
of its casters (Bascur and Kennedy 2002). Applications in the
mineral industry have been reported by Hodouin et al. (1993),
Garrigues et al. (2000), Bascur et al. (2006), and Romero et
al. (2006).

Rigorous model-based technology is also becoming pop-
ular due to its ability to access real-time data through dynamic
simulators. These simulators require validated and classified
data for the estimator to be robust. State estimators are a great
way to detect equipment or process changes (Bascur 1999).
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Table 7 ANSI/ISA-95 Enterprise to Device decomposition model

Physical Model Abstraction

Typical Model

Enterprise A collection of sites A process block diagram of a plant, including
inventory, shipping, and receivables and a
geographical model integrated with a geographic
information system and enterprise resource planning

Site A set of plants within a site, including A plant layout map, integration with geographical

inventory, shipping, and receivables information systems

Plant A set of processing units within a plant Process block diagram

areq, including inventory, shipping, and
receivables

Plant area A set of units Process flow diagram

Unit A unit with all sensors defined Process flow control diagram

Equipment Equipment with all sensors included Process equipment diagram

Device Detailed sensor locations Piping and instrumentation diagram

Source: Bascur 2016

These techniques are now evolving into machine learning
algorithms.

Collecting and reusing process equipment data from DCS
and PLC systems and laboratory information systems is usu-
ally done within an industrial data infrastructure (data, analyt-
ics, event framing, visualization, and collaboration tools).

Operational excellence is one of the most valuable enter-
prise programs to boost morale. Employees feel empowered
knowing that they are contributing to the company’s overall
mission. Implementing a culture of continuous improvement
and innovation is necessary to add value to process controls
and data management.

Planning and Production Operational Intelligence

The intention of online performance monitoring, as shown in
Figure 15, is to detect and predict causes that could lead to a
problem. Maintaining a plant and keeping the process flow on
target according to the business plan is key for an operational
manager. A reduction in process flow is an issue that requires
investigation. Using new ways of transforming data into
actionable information is the new transaction of the future,
and submitting and analyzing any problems requires proper
action. The proper alert mechanisms are email, process graph-
ics, and visualization tools. These events can be monetized by
estimating losses, having the necessary time intervals avail-
able, and integrating the data to the desired level of detail. The
alerts can trigger collaboration and further analysis, as shown
in Figure 15. Operations must be strict to ensure that control
loops operate at peak performance—they are essential to oper-
ating the plant safely and efficiently.

Figure 15 is a conceptual diagram that shows the pro-
cess of detecting abnormal operating modes for continuous
improvement and innovations. The schematic shows a process
workflow that inputs the targets from the daily plant schedule
and the process inputs into a process unit analytics template
that classifies the operating modes of all the process units in
an industrial plant. The variance is the difference between the
expected and actual results. The expected results are generally
specified in the operational budget or in the current production
schedule. This variance can be used as an exemption operat-
ing strategy when implementing an operational intelligence
program. As such, the classification of operating times can be
used to aggregate the information for all the process units. The
schematic presents two questions: (1) Are we on target? and
(2) Are we satisfied? (Bascur and Kennedy 1996; Bascur et al.

2016). In essence, it is an innovative strategy that automates
the theory of constraints for a digital plant (Goldratt 1984).

The data for the first question can be monitored in real
time by defining the interval of time that the process units are
running on target, are in trouble, are idle, are down, or are in
maintenance. These operational events can then be used by the
continuous improvement team to aggregate the data to look
for opportunities. The large amount of data calls for the use
of modern tools such as Microsoft Power BI to visualize the
information and to assess operational losses and gains (Bascur
2016).

Figure 16 shows a typical smelter process block diagram
(Bascur and Kennedy 2004b). The smelter data are modeled
using process unit templates to standardize the nomenclature
for the information to be accessed by the process analytics
and visualization tools. Figure 17 shows a diagram of the data
transformation to detect operating events and provide further
analysis.

Figure 18 shows the results of the data aggregated by the
operational events for all the units in the smelter process dia-
gram presented in Figure 16. For this time interval, all the
units exhibit many events in “Trouble” mode. This means that
the daily production set for these units was not satisfactory,
resulting in many minor losses, as presented in this unique set
of tools. Presenting the information using this innovative tool
enables users to ask questions about the data and view graph-
ics that present the results for evaluation and further analysis.
Power BI downloads the event data, and Cortana assists in
providing the best visualization of the information.

Using these tools allows users to access the dashboards
via the cloud either onsite or remotely. These new tools pro-
vide a collaborative environment to enhance improvements in
the operating plant. As such, a user can upload a report to the
cloud and send an email from his or her tablet or smartphone
to others to request assistance with analyzing the data.

Equipment Condition-Based Monitoring

Condition-based monitoring is a very beneficial practice
when real-time data from the process and equipment become
available. Equipment performance monitoring provides accu-
rate performance information on equipment such as boilers;
compressors; furnaces; heat exchangers; and general rotating
equipment such as pumps, conveyors, turbines, and so on.
This monitoring focuses on increasing throughput, determin-
ing when to stop the equipment before it breaks, and reducing
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Figure 15 Real-time operational intelligence strategy
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Figure 16 Smelter process model context for data modeling for performance management

unscheduled equipment downtime. Thus, increasing plant
availability and consequently reducing the overall specific
consumption of utilities and production losses by analyzing
real-time data enable operators to detect the first indications
of an increase in the motor amperage standard deviation or
to analyze the lube chemistry of the rotating equipment. This
condition-based monitoring strategy directly supports the
elimination of waste, which is consistent with an operational
excellence program (Pierce 2015). Mojtabai (2009) provides

an overall description of mine planning and production man-
agement. The author discusses the latest concepts in equip-
ment reliability, functionality, and the maintenance life cycle
in mining and mineral processing operations.

Figure 19 shows equipment conditions over time. Over
time, the performance of the equipment can be captured in real
time using sensors to monitor the overall quality of the equip-
ment (Pierce 2015). The P in Figure 19 stands for potential
failure. Potential failure event detection is the moment when
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Figure 17 Digitizing a smelter plant for performance monitoring in an operational excellence program
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the first sign of deterioration is seen and reported. There are
additional measures that can help assess the condition of the
equipment over time.

The “run to failure” portion of the graphic in Figure 19
represents the risk of asset failure, assuming that the test
method indicates that a failure is imminent. The response
opportunity time varies based on the assets, the type of test,
and the frequency of the testing method. Quite often, there is
little time to respond, depending on plant conditions, time of
the notification, and so on. Most commonly, alarms for criti-
cal items are sent to operations to ensure that equipment can
be moved to a safe location prior to catastrophic failure (rep-
resented by F). At this point, a work order is generated and

work begins. Pierce (2015) describes several alternatives to
this process.

Control Loop Performance Monitoring

Another strategy enabled by an enterprise data infrastructure
program is control loop monitoring. This strategy focuses on
process control loop monitoring, instrumentation calibration,
and process stabilization and optimization. The goal is to mon-
itor the key metrics for the unit and unify the process control
loops associated with the unit optimization strategy. Control
loops require continuous monitoring and tuning to maintain
their performance and usability. Degradation of the sensors,
final control elements, and process changes in the equipment
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Figure 19 Condition-based monitoring: Proactive detection of equipment issues

must always be taken into account. Maintaining all the control
loops is a challenge for all process plants. Having the capabil-
ity to track the controlled and manipulated variables against
process disturbances allows for the improvement of product
quality and the overall management of the process on a day-
to-day basis.

Control loop performance monitoring not only helps
identify faulty control valves but also indicates that properly
functioning valves may have been targeted for maintenance
through a preventive maintenance program. The costs resulting
from not performing maintenance can be significant (Bascur
and Soudek 2014; Ruel 2010a, 2010b; Van Scholkwyk 2012).

Several control performance goals should be taken into
consideration. These are discussed in the following sections.

Controlled Variable Performance

The standard deviation, variability, percentage of time inside
limits, percentage of time not saturated, noise level, and oscil-
lation index should be monitored.

Model Error
The wvariability and integral moving average should be
monitored.

Control Loop Performance

The percentage of time in the highest mode, percentage of
time in service, percentage of time in normal range, oscilla-
tion index, and maximum error should be monitored.

Manipulated Variable Behavior

The percentage of time not saturated, error due to manipu-
lated device stiction, valve travel, and valve reversals should
be monitored.

Sensor monitoring is intended to validate data and detect
failures to reduce the risk of damaging equipment and to
improve overall production performance and availability. The
primary benefits of intelligent field devices are improved pro-
cess control and optimization, as well as the ability to bet-
ter manage the health and life cycle of the devices. Rigorous
equipment monitoring focuses on increasing throughput,

determining when maintenance is needed, and increasing
plant availability.

The ideal approach is to use real-time data and equipment
information to classify the current operating data to provide
alerts and notifications to prevent process downtime.

Mine-to-Mill Big Data Analysis Example

One of the most valuable tools today is the availability to
provide context to real-time data for big data analysis using
self-service tools such as Microsoft Power BI and machine
learning tools.

Consumables such as power and water are monitored in
real time, as well as the average, maximum, and minimum
targets for each operational mode by shift, month, or any inter-
val of time. The average, maximum, and minimum targets
are calculated using an algorithm from the data infrastruc-
ture. These are called time-derived variables for operational
modes, as given in Table 4. The variability of consumption
is therefore monitored and provides the engineer with infor-
mation to investigate abnormal consumption and identify the
root cause of this occurrence. The status and availability of
the assets in the grinding circuit are also monitored to pro-
vide vital information on events—whether an asset is running
properly, idling, in maintenance, down, or having trouble, as
well as how often it has been in these states and for how long.
Monitoring process events enables operators to aggregate the
data by ore type, shift operator, and process modes to evalu-
ate the copper grade, recovery energy, and water consumption
based on the ore type (e.g.. Bascur and Soudek 2014; Bascur
etal. 2017).

Figure 20 shows a process data model for a typical min-
eral processing concentrator. A process unit template is used
to organize and perform online calculations. These calcula-
tions generate event frames to aggregate the data and events
into real-time insights.

A cause-and-effect diagram, also called a fishbone dia-
gram, is used to organize the operational data for business
analysis. The process data are aggregated by the events (peo-
ple, quality, and equipment operating modes) for analysis and
visualization.
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Figure 21 Cause-and-effect fishbone (Ishikawa) analysis design structure

Figure 21 shows an example of a fishbone structure for
concentrator analysis. It contains five key categories: people,
ore type, process parameters, equipment, and consumables.
Each of these branches contains subcategories of variables
that can be organized depending on the type of cause-and-
effect analysis to be done.

In this example, the assets are organized by production
line with the monitoring of consumables. Real-time statistics
are used to calculate the minimum, maximum, and standard
deviation of each consumable by asset, by production line,
and by mill. Users can modify the time range they are inter-
ested in from, say, 1 hour to a shift or a day. The statistics are
recalculated in real time based on this time range. This way,
operations and the plant floor are using the same assets as the
business systems, but these departments have different views
of the same data for their own purposes and needs (Bascur et
al. 2017). Figure 22 shows the handling of the process data,
process events, equipment status, process areas in consider-
ation, material type (ore/blend), and process time. This figure
shows the analysis of the results shown using Power BI in
Figures 18 and 23.

Figure 23 shows a Microsoft Power BI dashboard, where
the selected event is sliced into data segments. These filters
are used to modify the table based on the events chosen by the
user. These can be based on many selected criteria, such as
block number, process area, ore type, and shift team for all the
variables selected, such as total production, reagent consump-
tion, water consumption, and electricity consumption for the
process lines in the mill. The variables are time interval, ore
type, ore type block number, number of production lines (bin,
mill, flotation), and production line availability (running, in
trouble, down, stopped. in maintenance) (Bascur et al. 2012).
Kanchibotla (2014) and Bennett et al. (2014) discuss advances
in integration with blasting and mine-to-mill implementations.

Predictive Analytics and Machine Learning

Previous sections of this chapter discussed strategies to
perform gross operational data classification, as shown in
Figure 13, as a prerequisite to perform online modeling of
the process plant. Predictive analytics is an important subfield
of data analytics. Predictive analytics is the art of building
and using models that make predictions based on patterns
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Figure 22 Multidimensional cube of real-time data with context and data services
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Figure 23 Example of a multidimensional analysis report to perform dynamic operation analysis using Microsoft Power BI

extracted from historical data. Some examples are particle
size distribution; Gaudin module estimation; particle size;
flotation air holdup in the pulp; metal recovery; grade pre-
dictions based on process conditions and feed grade material;
equipment conditions based on their current speed, power, and
vibration to prevent downtime; and quality data versus process
variables. Identification of the proper manipulated variables to
achieve the right size distribution or the best strategy to mini-
mize metal losses in the tails can predict emissions based on
process parameters (Steyn et al. 2018).

An empirical model makes predictions to advise opera-
tors. The model is obtained by training an algorithm to make
predictions based on a set of historical examples. This is
called field machine learning based on the evolutions of the
algorithms to classify and fit the data to empirical models.
Machine learning is defined as an automated process that
can extract patterns from data. An example of this is called

supervised machine learning. In this process, a model of the
relationships among a set of descriptive features and a target
feature based on a set of historical data examples is created.
The generated data from an algorithm model are used to make
predictions (Kelleher et al. 2015; Raschka 2015). The opera-
tional data subset is obtained from the gross operational mode
classification, as shown in Figure 15. Defining an operating
mode for each process unit can help provide a good set of his-
torical data to develop process models for plant optimization
(Steyn et al. 2018; Plourde et al. 2017).

Figure 24 shows an integrated grinding flotation circuit
using an online predictive model for recommendations and/
or supervisory controls. A yield-based model can be derived
from the fishbone analysis shown in Figure 21. The airflow
rate to the flotation cell is a measured variable and can be con-
trolled. The air holdup is a soft sensor calculation based on
a flotation model (Bascur 2012). Having the right air holdup
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Figure 24 Online model predicting quality variables for integrated grinding/flotation optimization

profile in a flotation bank improves the overall recovery of
metal into the concentrate. It is a critical variable that can be
used with these new tools.

The fishbone analysis shows the effect of the recovery
grades and losses based on the operating parameters; the
equipment events; the operating shifts; the material grades;
and the amount of energy, water, and reagents used to achieve
the recovery and grades. Classification of the operating data
enables operators to build this predictive model using regres-
sion analysis and other models provided by the new tools that
are available.

Once a training data set is obtained, a search for the best
algorithm to fit the data can begin. To do so, one must have
a good understanding of the business and the problem to be
solved, a good understanding of the data, and proper prepa-
ration of the data. The key variables shown in the proposed
fishbone cause-and-effect diagram are used in designing the
predictive analytic model. The data hierarchy model shown in
Figure 13 can then be used.

There are many algorithms to choose from in modern
machine learning tools. Least-squares multiple regression,
neural networks, and random forest trees are the most tra-
ditional models used. These models are found in Microsoft
Azure Machine Learning Studio, or it might be useful to learn
how to use Python and R. Python and R are two of the most
commonly used programming languages for predictive ana-
lytics. They are not especially difficult to learn, but learn-
ing these programs may be more difficult for someone who
has not been a process control engineer or process engineer.
One can also use the Analysis ToolPak available in Excel to
develop regression models.

Mass Balances and Data Reconciliation
There are several requirements for developing a methodology
to implement a data reconciliation system. First, the algorithm
that is able to balance and reconcile the plant data must be
robust and must perform correctly against any process topol-
ogy or configuration. In the past, several mathematical and
statistical tools have been developed to solve this reconcilia-
tion problem. However, a mathematical algorithm without an
information infrastructure is of little value. Second, the right
infrastructure to connect the object-oriented model to the real-
time process data must be in place. A database that allows
storage and manipulation of elements is necessary. The system
has to adapt to changes in the process topology because, for
example, a meter going out of service is enough to change the
mass balance of a process network. Additionally, this object-
oriented database should be able to communicate with the
real-time information system. Third, the real-time system acts
as a repository of process data and inventory data and as a
metallurgical laboratory of both the raw and reconciled data.
The results are distributed to all staff, including the operators
and the plant manager.

The typical problems with process data in industrial
plants are

* An overwhelming amount of data,

* Low confidence in the available data,

+ Lack of consistency—the data do not make sense,

* The data violate known constraints (mass and energy bal-
ances), and

* Poor data quality creates a decision-making “fog” at all
levels of an organization and results in a financial penalty

(fine).
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Figure 25 Daily procedure for data reconciliation

These problems have been addressed in the past using tradi-
tional methods to capture the required information. However,
the main problem with these traditional methods is that human
errors can occur during manual data entry, and operational
events, which are typical in metallurgical complexes, may be
ignored.

The instream analyzer measures the metal compositions
for the period of the balance analysis. The mass balancing
algorithm runs daily, producing the operational reconciled
reports. Figure 25 describes the daily procedure to reconcile
process data. The unbalanced data are collected from the real-
time information system. Once the data are in the system, a
set of analysis rules is executed to detect gross errors that can
negatively affect results. These gross errors are eliminated
before the final data reconciliation is run. The results provide
a unified balance for the whole complex. The assay errors are
identified and reported.

A concentrator plant mass balance model includes the
operational data, metal assays, metal inventories and receipts
of mineral from the mine, stockpiles, bins, thickeners, crush-
ers, grinding, flotation circuits, and the overall flow and com-
position balance of the chemical components. Once the mass
flow, stream, and inventory compositions are available from
the system, many calculations and reports can be performed.
In the process of solving the network problem, the measure-
ments are validated and gross errors are detected prior to pro-
viding a solution (Bascur and Kennedy 2002, 2004a).

Once the data are reconciled, they can be sent to the busi-
ness information system, where they can be distributed to all
users, from operators to engineers and managers. The infra-
structure of the data reconciliation system has to adapt to any
changes to the process flow or the measuring system because
both the process topology and the data are not static.

The reconciled data can then be used to improve yield
performance, balancing the optimal recovery and grades
while minimizing metal losses in the tails. The data can be
reused to improve process planning and to determine the
optimal set points for steady-state optimization of the plant
(Bascur and Linares 2005; Bascur and Soudek 2009a, 2009b).
Hodouin (2011) also described additional uses for this type of
methodology.

INDUSTRIAL INTERNET OF THINGS: DISRUPTION

IN AUTOMATION

Industrial companies have pursued horizontal and vertical con-
nectivity within their operations for some time now in their
ongoing efforts to improve performance and achieve opera-
tional excellence. Most existing sensor and actuator points
in an industrial automation system are there to support pro-
cess or production control, safety, and regulatory compliance.
However, in the past, adding sensors to support condition-based
maintenance or other noncontrol uses was done infrequently
due in part to the costs of adding the sensors and associated
software systems to existing hierarchical control systems.
However, new approaches, including technologies such as less
expensive strap-on sensors, Wi-Fi connectivity, predictive ana-
lytics, and cloud computing can make condition-based mainte-
nance and other “connected world” applications practical.

Large mining and metal companies rely on many vendors
and partners. There is an increasing degree of outsourcing and
integration between an operating company and its partners.
There is also constant pressure to improve performance and
reduce costs. Minerals are becoming more complex. All of
these challenges require companies to innovate and simplify
access to process and equipment information. Data transfer is
a manual process; it is very time-consuming and has very little
auditability and security.

In many mining operations, ore is crushed and wet milled
to liberate the valuable mineral. This slurry is concentrated by
flotation and then filtered to form a dry mineral concentrate
that is shipped to refineries to produce metallic products. The
type of filtration equipment required depends on the particle
size, mineralogy, and shipping requirements. As with all min-
ing operations, the required equipment is robust and designed
to be reliable even under the toughest operating conditions.

The availability of a central data infrastructure database
allows operational information to be shared with external
collaborators. As shown in Figure 26, P1 Cloud Connect can
be used to share and expand the use of the operational data.
Cloud-based strategies simplify access to real-time informa-
tion through simple registration to PI Cloud Services run-
ning on Microsoft Azure. A plant asset {framework data model
is selectively shared using Pl Cloud Connect between the
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Figure 26 Pl Cloud Connect computer architecture example connecting an enterprise to its

service partners

enterprise and an equipment vendor. The data published by
the mineral processing company pertain to a set of equipment
used for material separation such as filters. As such, the opera-
tional data of the filters are shared by the customer and the
service provider in real time. This new capability provides a
secure, auditable, and low-maintenance exchange of real-time
processes and equipment. It drastically reduces the time spent
accessing data and enhances the use of data for equipment
vendors. As such, vendors can make recommendations about
the optimal use of energy. Many exciting new possibilities
are currently being explored by service providers using the
data at the original resolution. This allows for the monitoring
of sophisticated equipment by experts, integration with utili-
ties, automatic restocking, and integration with joint ventures
(Bascur et al. 2016).

Plant Operational Intelligence Strategy Conclusions
Despite the advances in automatic data collection and
archiving, business decision makers face the problem of
exploiting information that is relevant for plant operations and
the sustainability of the business enterprise.

The plant operational intelligence strategy adds opera-
tional context to the data. The data can be transformed into
operational insights for further analysis using machine
learning and business intelligence tools. This novel strategy
improves collaboration and provides real-time feedback on
decisions made at all levels of the organization. This strategy
allows the operating and support team to proactively detect
shifts in process performance; the team can use statistical
tools and process knowledge to identify shifts in performance.
It can provide structure and a means of determining the root
cause of the shifts and, if needed, propose corrective action.
The competence team is in charge of identifying process
improvement opportunities and providing sufficient informa-
tion and root-cause diagnostics to identify areas of improve-
ment and identify new performance indicators.

The efficient use of water, energy, and resources is criti-
cal; the best approach is to have the infrastructure in place to
be able to conduct small focused projects, collaborate among

different teams in the organization, and understand that this is
a continuous improvement process.

CONCLUSIONS AND FUTURE IMPLICATIONS

Many advances in sensors, control systems, and information
systems are now converging into what is being called the
“internet of things.” It is always a challenge to assess the situ-
ation in operating plants moving forward, but it is clear that
an operational excellence program that takes into account the
sustainability of the company is mandatory. Process analysis,
control, and optimization are part of the ecosystem.

For new plants, it will be a challenge to select the best
practices in this field to be able to exceed the traditional state
of the art. This chapter has discussed the state the art of what
is available and most prevalent today.

For existing plants, plant optimization will generate the
best return on investment because if equipment or software
is not added, optimization consists of using what one has on
hand. A step-by-step process is proposed in the study by Ruel
(2014b).

The first phase is to remediate instrumentation problems,
including the ones pertaining to valves, variable-speed drives,
analyzers, transmitters, and so on. When equipment is in
order, loops are put back in automatic mode. The key perfor-
mance indicator (KPI) for this phase is the proportion of loops
operating in the highest mode. If a loop oscillates, standard
default values can be used for this type of loop.

The second phase consists of validating the control strate-
gies, properly configuring the systems (control system, pro-
grams and parameters, human—machine interface, alarms),
and then tuning the loops and control strategies. The KPI for
this phase is the number of loops in service (right mode, non-
saturated, nonoscillating, low variability). Soft sensors should
also be validated.

The third phase consists of analyzing the process and
expected performances to optimize the control loops and
control strategies. When mixing products, for instance, each
flow loop should move at the same speed to ensure the proper
recipe when increasing the total flow. The KP1 for this phase is
variability (per loop, per unit) and economic weight.
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Figure 27 Process control investments and return on investment based on knowledge

strategies

The fourth phase is necessary when performance is not
sufficient. In this phase, advanced control should be added:
advanced regulatory control, MPC, or fuzzy logic control.
A decision tree should be presented to determine the right
approach. The KPI is the same as that of the third phase, but a
percentage of time use should also be added.

Once all steps have been completed, control performance
monitoring software should be used to sustain the results and
pinpoint equipment or loops that are not performing as stated.
Also, after an audit on the alarm system, alarm management
and rationalization should be performed if needed.

To calculate benefits, the following need to be analyzed:
the past and benchmark production, recovery, chemical prod-
uct consumption, water consumption, energy usage, and other
factors. KPIs (e.g., energy/t, $/t, %/t) need to be estimated.

Once an area is optimized, the KPIs need to be reviewed
and the return on investment needs to be calculated. In most
cases, the optimization projects will be funded within a week.

Figure 27 shows that most plants have invested in auto-
mation hardware, which is the most costly item, as discussed
by Ruel (2014b). It is clear that process control hardware is a
large part of the investment in new plants. However, the plants
are living things—they evolve, and the process must adapt to
new raw materials. As such, plants must change and adopt new
technologies to operate efficiently based on current economic
and local environmental regulations. Additional information
can be found in the studies by Ruel (2010b, 2014a, 2014b).

Boufard (2015) discussed the benefits of process control
systems in mineral processing grinding circuits, conclud-
ing that the benefits are undisputable: a 1%-16% gain in
throughput, up to a 1% gain in recovery, fewer operator inter-
ventions, and a payback in less than 6 months (Bouche et al.
2005). Gupta (2016) described the new set of skills required to
manage process control and advanced operational techniques
and stated that “technology has both complicated process con-
trol and made it easier.”

Bauer and Craig (2008) provided an economic assess-
ment of advanced process controls. The framework provides
a method to evaluate the advanced process control program
for benefits estimation. The main profit contributors from their
survey are as follows:

» Throughput increase (67%-70%)

« Process stability improvements (45%—67%)
« Energy consumption reduction (45%—65%)
+ Increased yield mass of more valuable product (40%-60%)
* Quality giveaway reduction (30%—40%)

« Downtime reduction (15%-22%)

 Better use of raw materials (15%—19%)

* Reprocessing cost reduction (11%—12%)

« Response increase (11%—14%)

 Safety increase (9%—11%)

» Operating labor reduction (5%—15%)

» Other (7%—15%)

The data generated by the evolution of sensors, process
control, vision, sound, and other fields will continue to grow.
This big data opportunity is a fact. It requires a reengineering
of the current situation. The integration of real-time data and
operational data with business systems will converge. Today,
new large file systems can handle the large data requirements.
In addition, new machine learning algorithms are becoming
available to develop online predictive models to improve the
early detection of problems within plants.

Mill availability remains one the most significant indi-
cators of efficient mill operation and a KPI for concentrate
managers. Maintaining the optimum charge and composition
in a SAG mill remains a fundamental challenge for efficient
mill processes.

Continuous improvements of liner life prediction and
reline planning are now a great augmented alternative for
improving availability and optimizing the grinding behavior
for optimal metal recovery.

Tailings are a necessary by-product of mining activities.
An operational excellence program is a holistic view that
requires data analysis to conserve energy, conserve water, and
manage geowaste materials such as tailings and waste rock.

Wireless and cellular technologies can transmit opera-
tional data from supervisory control and data acquisition
systems to operational site computers for additional analysis
to classify the data to detect problems. Historical, operation
mode—based data can be used to develop models for the pro-
active generation of alerts using a real-time industrial data
infrastructure.
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